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Preface

A.wide-ranging.impression.about.the.subjects.discussed.in.this.book.is.that.the.topics.
are.pivotal.for.understanding.and.solving.some.of.the.problems.flourishing.in.the.sec-
ond.decade.of.the.twenty-first.century.in.the.field.of.management.of.electric.power.gen-
eration. systems.. Noticeably,. the. chapters. begin. with. some. knowledge. from. the. last.
decade. to. uncover. lines. of. research. on. some. of. the. present. knowledge,. and,. in. due.
course,. anticipate. some.of. the.admissible. lines. for. future. research. in.management.of.
electric.power.generation.systems.

The.scope.of.the.book.is.well.defined.and.of.significant.interest..Indeed,.the.develop-
ment.of.new.methodologies.carrying.away.an.improved.forecasting.and.scheduling.of.
electric.power.generation. systems. is. crucial.under. the.new.competitive.and.environ-
mentally.constrained.energy.policy..The.capability. to.cope.with.uncertainty.and.risk.
will.benefit.significantly.generating.companies..It. is.a.fact.that.to.avoid.losing.advan-
tages.of.participating.in.the.electricity.market.or.negotiating.bilateral.contracts,.a.power.
producer.should.self-schedule. its.power.system.in.anticipation.. In.recognition.of. this.
fact,.hydro.and.thermal.scheduling.are.relevant.topics.today..Already,.wind.power.gen-
eration.is.playing.an.important.role.in.some.countries.and.will.be.even.more.important.
in.the.nearby.future.of.energy.supply. in.many.countries..Thus,.optimal.coordination.
between.hydro,.thermal,.and.wind.power.is.of.utmost.importance..Deterministic.and.
stochastic.modeling.frameworks.are.allowing.the.development.of.the.next.generation.of.
computational. tools. to.help. successful.management.of. electric.power.generation. sys-
tems..Research.is.underway.to.conquer.the.capability.to.cope.with.the.present.and.the.
future.of.electric.power.generation.systems.as.shown.in.this.book.

The.book.fills.a.need.in.its.field.by.having.adequate.strong.points.to.fulfill.not.only.the.
graduate.learning.task,.written.by.qualified.university.professors.in.a.pedagogical.and.
systematic.way.with.excellent.quality,.but.also.expands.on.many.of.the.latest.results.that.
are.adequate.for.engineers.and.researchers.working.in.this.field.today..Many.parts.of.the.
book.are.based.on.the.author’s.and.other’s.current.research.and.some.parts.have.never.
appeared.elsewhere.in.text.books;.most.of.these.discussions.have.been.proposed.as.PhD.
theses,.postdoctoral. research,.and. industrial.development.carried.out.by. the.authors,.
but.have.been.selected.with.opportunity,.written.with.accuracy,.and.are.well.balanced.in.
theory.and.practice..Each.chapter.is.organized.with.adequate.emphasis,.coherently.and.
effectively,.presenting.large-value,.up-to-date.research.showing.novelty,.launching.into.
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the.mind.of.interested.readers’.future.lines.for.cutting-edge.research.on.forecasting.and.
scheduling.issues.regarding.electric.power.generation.systems.

The. text. has. three. main. parts.. The. first. part,. Chapter. 1,. constitutes. indispensable.
knowledge.and.embarks.on.the.report.of.real-world.problems,.concerning.the.present.
technology.of.electric.power.generation.systems,.regarding.both.the.structure.and.reper-
cussion.of.these.problems..The.second.part,.Chapters.2.through.5,.conveys.the.items.on.
uncertainty,.risk,.and.short-term.forecast.to.systematize.the.development.of.information.
management.systems,.helping.power.system.decision-makers.to.rise.above.the.unknown.
and.capricious.behavior.of.the.present.and.nearby.future.of.power.generation.systems..
Both,.the.importance.of.accessing.those.items.and.the.formulation.of.the.problems.are.
discussed..No.doubt. that. this.part. is.of.major. importance.and.a. crucial. input. for. the.
scheduling.task,.aiming.at.the.most.favorable.use.of.the.energy.sources.available,.which.
is.the.scope.of.the.next.part.of.the.text..The.third.part,.Chapters.6.through.10,.is.devoted.
to.the.rationality.studies.for.developing.information.management.systems.to.help.take.
decisions.to.avoid.losing.advantages.offered.by.playing.in.energy.markets.or.negotiating.
bilateral.contracts..Hydro.and.thermal.scheduling.are.discussed.both.by.identifying.the.
main.variables.and.parameters.and.by.the.formulation.of.the.corresponding.mathemati-
cal. programming. problems. to. achieve. optimal. decision.. Wind. power. generation. is.
addressed.in.coordination.with.thermal.and.hydropower.generations..The.thrust.point,.
concluding.this.last.part,.is.operation.of.multigeneration.systems..Both.the.formulation.
and.solution.methodologies.embodying.a.component.supported.by.the.theory.of.multi-
objective.programming.and.planning.are.discussed.

A.final.observation.about.this.book.is.that.no.claim.is.made.that.it.is.a.compendium.
of.all.known.results.about.management.of.electric.power.generation.systems..However,.
the.editor.and.the.authors.have.attempted.to.include.a.rich.and.varied.selection.of.
subjects.that.not.only.are.of.current.interest.but.also,.I.believe,.will.be.main.research.
lines.for.the.following.two.decades.to.achieve.an.enhanced.management.performance.
in.the.field.of.electric.power.generation.systems.

MATLAB®.is.a.registered.trademark.of.The.MathWorks,.Inc..For.product.informa-
tion,.please.contact:

The.MathWorks,.Inc.
3.Apple.Hill.Drive
Natick,.MA.01760-2098.USA
Tel:.508.647.7000
Fax:.508-647-7001
E-mail:.info@mathworks.com
Web:.www.mathworks.com

mailto:info@mathworks.com
www.mathworks.com
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Chapter Abstracts

Chapter 1: Overview.of.electric.power.generation.systems.

Chapter 2: The. problem. of. generation. self-scheduling. in. electricity. markets. can. be.
approached.via.the.tools.of.modern.portfolio.optimization.theory..This.chapter.presents.
scheduling. frameworks. that. are. based. on. the. Value-at-Risk. (VaR). and. Conditional.
Value-at-Risk. (CVaR). measures.. It. also. discusses. worst-case. risk. formulations. that.
account.for.data.uncertainty.within.the.decision-making.process..In.all.formulations,.
the.problem.is.cast.as.a.semidefinite.program.that.can.be.solved.efficiently..The.optimi-
zation.programs.are.clearly.illustrated.on.a.small-scale.test.system.

Chapter 3: The.focus.on.load.forecasting.application.has.moved.from.large.aggregated.
loads.toward.bus.demands,.because.of.economic.and.security.motivations..Therefore,.
with.hundreds.of.load.points.to.be.simultaneously.predicted.in.an.online.environment,.
nonautomatic.procedures.for.model.estimation.are.no.longer.convenient..This.chapter.
presents.a.data-driven.approach.for.the.design.of.neural.network-based.load.forecasters..
The.automatic.procedure.starts.with.data.multiresolution.decomposition.via.wavelets,.
followed.by.input.and.model.structure.selections..Input.variables.are.chosen.by.a.com-
bination. of. techniques. suitable. for. nonlinear. models.. Neural. network. structures. are.
determined.by.Bayesian.inference..A.nonparametric.technique.to.estimate.prediction.
intervals.completes.the.framework,.providing.the.required.information.to.feed.opera-
tional.aid.tools.

Chapter 4: With.the.restructuring.of.electric.power.industry,.electricity.is.traded.as.a.
commodity. in. the. new. environment. of. open. electricity. markets.. As. in. many. other.
financial.markets,.electricity.market.participants.have.paid.attention.to.price.forecast.of.
this. commodity.. However,. the. great. amount. of. traded. volume. and. high. volatility. of.
electricity.price.usually.discriminate.electricity.market. from.other.financial.markets..
These. two. factors. also. motivate. many. research. works. on. the. area. of. electricity. price.
forecasting.in.recent.years.

Based.on.the.forecast.horizon,.electricity.price.prediction.can.be.classified.into..short.
term.(few.hours/days),.mid-term.(few.weeks/months),. and. long. term.(few.years)..The.
most. common. form. is. short-term. electricity. price. forecast,. which. is. the. focus. of.
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this chapter..This.kind.of.forecast.is.used,.for.instance,.for.the.preparation.of.sell/buy.
bids.by.the.market.participants..Accurate.short-term.electricity.price.forecast.in.the.spot.
market.helps.power.producers.to.adjust.their.bidding.strategies.to.achieve.the.maximum.
benefit.with.minimum.financial.risk..Similarly,.customers.can.derive.a.plan.to.maxi-
mize.their.purchased.electricity.from.the.pool,.or.use.self-production.capability.to.pro-
tect.themselves.against.high.prices..This.chapter.also.focuses.on.the.price.forecast.of.the.
market.participants.(and.not.independent.system.operator),.which.means.predicting.the.
price.before.submitting.the.bids.

Most.of.electricity.price.forecast.methods.have.been.designed.for.normal.price.pre-
diction..However,.price.spikes.are.an.important.aspect.of.electricity.price.impacting.its.
forecast.accuracy..Electricity.price.spikes.can.also.have.serious.economical.effects.on.the.
market.participants..Recently,.some.researchers.have.paid.attention.to.electricity.price.
spike.forecast.

In.this.chapter,.the.most.accurate.and.robust.electricity.price.forecast.methods.are.
described..These.methods.consist.of.pre/post.processors,. feature. selection. techniques.
and.forecast.engines..In.the.last.part,.some.strategies.for.price.spike.forecasting,.includ-
ing.prediction.of.price.spike.occurrence.and.value,.are.discussed.

Chapter 5: Wind.Power.Forecasting.has.come.a.long.way.since.the.first.papers.in.the.
1980s.and.the.first.operational.approaches.in.the.early.1990s..Typically,.the.next-day.
forecast.carries.the.largest.economic.weight,.and.is.derived.from.online.SCADA.data.
are.state.of.the.art,.and.can.be.used.in.decision-making.tools.directly.to.fully.utilize.the.
full.predicted.distribution..Additional.to.the.wind.power.forecast,.ramps.or.variability.
on. different. timescales. can. be. predicted. as. an. additional. help. for. the. dispatcher. or.
trader.

Chapter 6: Optimal.economic.operation.of.power.systems.has.always.been.one.very.
important.subject.in.the.planning.and.operation.of.power.systems..While.the.minimiza-
tion.of.the.overall.cost.considering.both.the.investment.cost.as.well.as.the.operating.cost.
has.been.the.foundation.of.most.planning.approaches,.the.minimization.of.operation.
cost.by.operating.the.power.system.at.the.minimum.marginal.cost.was.the.most.com-
mon.basis.of.optimal.power.system.operation..These.principles.have.played.invaluable.
role.in.the.optimal.operation.of.the.traditional.power.systems.thus.far..This.basic.tenet.
of.these.principles.has.been.challenged.by.two.fundamental.changes.in.the.power.indus-
try.around. the.world:. the.development.of.competitive.power.markets,. and. the.emer-
gence.of.the.renewable.energy.sources.

Incorporation. of. renewable. energy. posed. some. difficulty. in. the. purely. cost-based.
approaches,.as. these.sources.of.energy. incurred.only.capital.costs.and.exhibited.very.
little.operating.cost.so.that.the.marginal.cost.of.energy.production.is.virtually.zero.

Deregulation. of. power. markets. leading. to. independent. generating. companies.
(Gencos).participating.in.the.grid.operated.by.the.independent.system.operator.(ISO).
has.brought.the.price.as.the.basis.for.market.operation..The.system-wide.operation.is.
carried.out.by.ISO.through.market.clearing.decided.on.the.basis.of.the.bids.submitted.
by.the.Gencos..The.individual.Gencos.are.responsible.for.their.own.unit.commitment.
and.generation.scheduling.according.to.the.market.clearing.by.the.ISO.
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This.chapter.describes. some.studies.carried.out. to. investigate. the.price-based.unit.
commitment.and.the.price-based.scheduling.for.Gencos.utilizing.a.variety.of.approaches.

Chapter 7: We.study.the.most.appropriate.modeling.approaches.for.the.analysis.and.
design.of.the.optimal.operation.strategies.for.a.hydroelectric.generating.company.that.
owns. several. plants. along. a. cascaded. reservoir. system. and. operates. in. short-term.
.electricity. markets.. The. analysis. is. based. upon. a. detailed. representation. of. the.
.hydroelectric.generation.facilities.in.the.context.of.a.day-ahead.market..This.approach.is.
.particularly. attractive. to. strengthen. competition. and. to. increase. the. technical. and.
.economic.efficiency.of.hydro.power.plants.

An. appropriate. Mixed. Integer. Nonlinear. Programming. (MINLP). algorithm. that.
maximizes. profit. is. developed. considering. the. technical. efficiency. of. a. hydroelectric.
generating.unit.as.a.function.of.the.discharge.for.a.given.net.head.of.the.associated.res-
ervoir..The.developed.methodology.allows.for.an.appropriate.representation.of.the.tech-
nical.efficiency.of.a.hydroelectric.generating.unit,.where.the.power.output.of.the.unit.
considers.the.variable.head.effects..We.apply.the.methodology.described.to.a.hydraulic.
chain.of.the.Spanish.electric.system.along.the.Duero.river.basin.

Chapter 8: This.chapter.presents.the.short-term.hydrothermal.producer..self-scheduling.
problem..The.problem.objective. is. the.maximization.of. the.producer.profits. from.his.
participation.in.the.day-ahead.energy.and.reserves.markets..An.integrated.0/1.mixed-
integer. linear. programming. (MILP). formulation. is. provided,. which. combines. both.
thermal.and.hydro.subsystems.in.a.single.portfolio.for.a.hydrothermal.producer.who.
acts.either.as.a.price-taker.or.a.price-maker.in.the.day-ahead.market..A.detailed.model-
ing. of. the. operating. constraints. of. thermal. and. hydro. generating. units. is. presented..
Thermal.unit.constraints,.such.as.unit.operating.limits,.minimum.up.and.down.times,.
ramp.rate.limits,.start-up.and.shutdown.sequences,.fuel.limitations.and.so.on,.are.dis-
cussed.. Hydro. constraints. ranging. from. simple. energy. limit. constraints. to. complex.
hydraulically.coupled.reservoir.constraints.with.time.lags,.head.dependent.conversion.
efficiencies,.hydro.unit.prohibited.operating.zones.and.discrete.pumping.are.presented..
Residual.demand.curves.for.energy.and.reserves.are.used.to.model.the.effect.of.the.price.
maker.producer’s.interactions.with.its.competitors..Uncertainty.of.market.conditions.is.
also.modeled.within.a.two-stage.stochastic.programming.framework,.while.a.specific.
risk.measure. is.also. incorporated..Postprocessing. techniques.are.applied.for. the.con-
struction. of. the. generating. units. optimal. offer. curves.. Numerical. results. from. the.
.application.of.the.MILP-based.solution.to.the.short-term.self-scheduling.problem.of.a.
hydrothermal.producer.participating.in.the.day-ahead.market.of.a.medium-scale.real.
power.system.(the.Greek.interconnected.power.system).are.presented.and.discussed.

Chapter 9: This.chapter.describes.how.wind.power.can.be.incorporated.into.tradi-
tional.unit.commitment.and.economic.dispatch.(UC-ED).algorithms.used.by.operators.
of.power.plants.and.power.systems.market.operators..Application.of.such.an.algorithm.
gives.greater.certainty.about.cost,.technical.limitations.and.emissions,.and.gives.some.
insight.into.potential.challenges.from.wind.power..The.information.in.this.chapter.is.
useful.for.power.market.participants.who.wish.to.optimize.the.operation.of.units.in.
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their.portfolio..The.knowledge.is.also.key.for.transmission.system.operators.or.policy.
makers.who.are.conducting.studies.to.assess.the.feasibility.of.future.wind.power.devel-
opment. scenarios.. The. interaction. with. international. trade. must. also. be. taken. into.
account,.in.addition.to.the.usual.constraints.on.system.reserves.and.the.operation.of.
conventional. units.. A. multiarea. model. with. constraints. on. the. interarea. import. or.
export.capacity.of.transmission.corridors.is.recommended..Special.attention.is.given.in.
this. chapter. to. the. detailed. modeling. of. estimated. wind. power. time. series,. starting.
with.scenarios.for.locations.and.installed.capacity.of.current.and.future.wind.power.
plants..As.far.as.thermal.units.are.concerned,.special.attention.is.given.to.the.modeling.
of.combined.heat.and.power.plants..Results.are.presented. for.a.case.study. involving.
North-Western. Europe,. with. a. focus. on. a. 12. GW. wind. power. scenario. for. the.
Netherlands.and.32.GW.for.Germany..The.simulation.results.focus.on.typical.outcome.
indicators. such. as. operating. cost. savings,. emissions. reduction,. and. curtailed. wind.
power..The.results.highlight.the.importance.of.well-functioning.international.markets,.
preferably.with.one-hour.ahead.gate-closure.time,.for.the.optimal.integration.of.wind.
power.in.large.power.systems.

Chapter 10: Multigeneration.(MG).of.different.energy.vectors,.such.as.electricity,.heat,.
cooling,.and.others,. represents.a.viable.alternative. to. improve.energy.generation.effi-
ciency. and. decrease. the. environmental. burden. of. energy. systems.. In. particular,.
.trigeneration. plants. can. be. efficiently. deployed. to. supply. complex. energy. services. in.
urban.areas,.with.typically.high.heat.demand.of.heat.in.winter.and.different.levels.of.
cooling.demand.throughout.the.year,.depending.on.the.specific.application..MG.could.
be.applied.through.a.number.of.solutions.exploiting.for.instance.generators.for.small-
scale.distributed.CHP.(combined.heat.and.power,.or.cogeneration),.heat-fired.absorp-
tion.chillers,.electrical.heat.pumps,.and.so.forth..Managing.MG.systems.is.a.challenging.
task.due.to.the.energy.flow.interactions.among.the.manifold.pieces.of.equipment.within.
the.plant.and.with.external.energy.networks..In.addition,.different.objectives.could.be.
pursued,.for.instance.of.economic,.technical,.or.environmental.nature,.or.a.combination.
of.the.above..Therefore,.robust.methodologies.for.MG.optimisation.are.needed,.to.cope.
with.most.general.cases..In.this.context,.this.chapter.presents.a.comprehensive.intro-
duction.to.modeling,.analysis,.and.assessment.of.MG.systems.in.the.operational.time.
frame,.with.special.focus.to.cogeneration.and.trigeneration..It.is.shown.how.to..formulate,.
in.a.compact.and.systematic.form,.suitable.operational.optimisation.problems.of.differ-
ent.kinds..In.particular,.also.relying.upon.relevant.literature.recently.published.in.the.
field,.the.main.variables.involved.in.the.analysis.and.the.complexity.of.the.operational.
optimization. problem. formulations. and. solutions. are. highlighted,. including. how. to.
handle.possible.conflicting.objectives.within.multiobjective.optimization.and.relevant.
solution.approaches.
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1.1  Introduction

Power systems are one of the largest and most complex engineering systems created by 
mankind. The importance of these systems is unquestionable, giving us a product that 
was, is, and will be the support for the development of modern society.

Historically, all power systems have developed in a similar way although with some 
technical variants [1]. They started their history as small isolated systems, powered by 
small production units with autonomous control and local distribution networks with 
small extension. These small systems have evolved in size and extension clustering in 
interconnected systems, raising the size of generation units to increasingly larger and 
more efficient units, using various energy sources. Large generation systems feed larger 
service areas, and consequently need technological solutions to transmit power through 
long distances, requiring transmission and subtransmission systems with multiple stages 
of voltage level. Over the years, power systems have continued to grow and expand to the 
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remotest locations where electricity is needed. This evolution resulted in a very efficient 
generation system, interconnected by transmission systems capable of delivering energy 
for hundreds of miles with little energy loss, and versatile distribution systems, with high 
reliability and quality, safe for end users.

Thus, the traditional power system is composed by a large centralized generation sys-
tem, a very high-voltage transmission, a high-voltage subtransmission system, and a 
distribution system. Because this power system structure is an optimized solution, this 
configuration has successfully persisted through decades with high efficiency and qual-
ity of service. In recent decades, however, the threat of the unsustainability of the system 
was evident, from the perspective of the environment and the security of the supply. The 
conventional energy sources threaten not to be enough to cover the increasing con-
sumption and are not sufficiently clean to mitigate the present environmental problems 
of the planet. This is how a new paradigm of dispersed generation based on renewable 
energies emerged [2]. The purpose of this new paradigm is to collect an endogenous and 
clean energy resource. Because of the dispersed nature of this resource, the change of the 
power system at a conceptual, technological, and organizational level is inevitable. This 
new paradigm develops dispersed and renewable generation on a larger scale, which is 
intermittent and difficult to control, requiring new technical approaches to control the 
systems.

It is amazing how actual power systems, with their dimension and complexity, are 
controlled. As there is a minimum storage component in power systems, it is neces-
sary to ensure a perfect balance between production and consumption for every mil-
lisecond. We can imagine the difficulty and complexity of control in a system where 
most variables are not directly controllable. Power systems have the particular charac-
teristic of being controlled mainly from the power flow itself rather than through a 
separated and dedicated information system. This type of control is possible when the 
generating units in a system are controllable; however, in recent decades, many new 
components that are not controllable have emerged, especially dispersed generation. 
The challenge of the power systems of the future is to maintain the same quality con-
trol with less controllable variables and less direct control over the components of the 
system.

Not only the changes in technological paradigm but also organizational changes have 
brought uncertainty to power systems. The change to deregulated organizational systems, 
unbounded organizational structures, and market-oriented approaches originate the loss 
of uniqueness and centralization in the management and control system. The number of 
independent agents in the system (e.g., independent power producers, market agents) with 
the capability influencing the control is increasing. Moreover, these agents work in a com-
petitive environment which means that information, relevant for strategic decisions, is 
kept secret among agents. All this additional uncertainty in the information can only 
result in a lower capacity to control and optimize the management of power systems.

Throughout this chapter we will provide a brief overview of electrical power systems 
and give a perspective of its characteristics and control variables in order to lay the foun-
dations for understanding the issues addressed in this book. Here, we will also introduce 
the challenges and possible solutions for this environment in order to change the power 
systems.
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1.2  Power Generation Technologies

1.2.1  Generation, the Heart and Brain of the Power System

Generation is certainly the heart of the power system—it is from this unit that the power 
flows through the whole system to reach the consumers. In contrast with other network 
systems, the flow is not controlled at the transmission level but is mainly controlled in 
the generation units. Therefore, we may say that generation is the heart and brain of 
energy systems.

The generation system is very diversified. It has integrated different types of energy 
conversion technologies: thermal, wind, solar, and hydropower. It has various types of 
primary energy; for instance, in the case of thermal plants, the energy source can be gas, 
coal, fuel oil, geothermal, biomass, or solar. The generation system is also varied with 
regard to the size of the generation units: the system can integrate GW units, like nuclear 
power plants, or small generation, like residential photovoltaic microgeneration. The 
generation system is also diversified in terms of the geographic distribution; big conven-
tional units have the advantage of being centralized, but renewable resources must be 
collected from dispersed areas with small-sized units. The different sizes of the systems 
respond to the optimal economical solution but are restricted by technical, geographi-
cal, and environmental constraints. This diversification of the generation technologies is 
a major advantage for the power system, mixing alternative energy resources and tech-
nologies, allowing more independence from fossil energy sources and energy markets 
providing security of supply. On the other hand, the management of such technological 
diversity implies greater complexity in managing and controlling the system [3]. We will 
address this problem and provide solutions throughout this book.

Some of the technologies can be scheduled. For fuel-based technologies, we can man-
age the storage and usage of the resource, as is the case for most thermal and some hydro-
power generation technologies. But for other technologies, we are unable to control the 
resource, as is the case for wind and solar photovoltaic technologies. In these cases there 
are independent variables that cannot be controlled. There are two possible ways of con-
trolling them: one is to waste the energy, not using it when it is available, or forecasting 
the resource availability [4]; the second is the approach followed in this book, which is 
obviously the most intelligent approach for optimizing the internal resources.

The seasonality of the resource is an important issue for the scope of scheduling solu-
tions. This seasonality differs from region to region and its impact depends on the pro-
portion of different technologies. Different energy sources have different availability 
throughout the year. For instance, in Europe, during the winter months, the availability 
of water resources is very high and sometimes excessive. On the other hand, during the 
summer months, the availability of solar resource is high. This complementarity is very 
valuable for optimizing the system, but in some cases there is seasonal coincidence of the 
resources. For instance, wind resource in Europe is generally higher during the winter 
months, overlapping with the period of high penetration of hydropower generation. This 
can be a problem for power systems that use reservoirs to store excess wind energy, 
because this seasonal period reservoir no longer has the capacity to store wind power by 
pumping water to high reservoirs [5].
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The variability and intermittency of the resource are important challenges to be over-
come in generation scheduling. Some technologies, such as solar and wind, have very fast 
variability. In an area of 500 × 500 km2 the wind resource can vary about 10% of the maxi-
mum capacity in 1 h [6]. Generation based on solar resources can be even faster, with 
variations of 30%. The aggregation of a wide geographical extent of dispersed generation 
softens this variability, but in a different way for each technology; for instance, it softens 
the variability, but this effect is more important for photovoltaic power than for wind or 
hydropower. This is due to the differences in the correlation of production at different 
distances.

However, the intermittency and variability do not depend only on meteorological 
aspects. Sometimes the mechanisms of tariffs and market signals cause undesirable 
variability for generation. For instance, step tariff periods in small hydropower genera-
tion, with lower price for off-peak and higher price for non-off-peak times, cause an 
artificial step variation of 40% generation in less than 1 h. Signals from market prices 
may also cause artificial variations in scheduling generation. This is more evident in 
technologies with more ability to store the primary resource, such as hydropower, bio-
mass, and cogeneration. However, usually, market price signals are a positive contribu-
tion to the system control and a mitigation of the generation variability.

The regulatory aspects and the ownership of the generation also have influence on the 
management of the production mix. For instance, there are some generation units that 
are available to be changed according to the needs of the system. There are other genera-
tion units that just follow the rules of the market and the power system operators are 
only able to impose certain restrictions. There are also independent power producers 
that, in most cases, are totally uncontrollable and system operators can only impose a 
few restrictions in extreme cases of system noncontrollability.

1.2.2  Thermal Power Generation

As mentioned earlier, there are various characteristics for thermal power stations. In ther-
mal generation, we include power plants based on fossil fuels and nuclear power plants. 
Thermal plants based on fossil fuels are classified according to the type of fuel, which can 
be coal, fuel oil, or gas [7]. The principle of operation follows a sequence of energy transfor-
mation. Initially, the fuel is burned in a boiler that produces water vapor. In the second 
stage, steam—at different pressure levels—is transformed into mechanical energy through 
a steam turbine. Finally, the mechanical energy is converted into electrical energy. The 
efficiency of the plant depends on the calorific value of fuel, but in general is less than 45% 
for steam-cycle power plants. For environmental or economic reasons, in many cases 
thermal generation units are converted to use other types of fuel. Some plants that were 
originally designed for coal were later converted to oil, converted back to coal, and then 
converted to gas. Because of thermal inertia of steam boilers, which is usually more than 
6 h, but can reach 10 h for a completely cold start, thermal power stations are restricted to 
the temporal switch-on and switch-off, and consequently are slow and inflexible, condi-
tioning the strategy of scheduling (unit commitment). For this reason, usually thermal 
power stations operate frequently on standby, without production, keeping warm for quick 
starts; of course, this has an associated cost to be considered in scheduling strategy.
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Due to the limits of combustion stability of the boilers, steam power plants have a 
technical minimum in the order of 30–40% of nominal power; it is not recommended to 
operate the plant below this value, as it could cause rapid decrease in efficiency. Some 
plants are more flexible and can operate under a stop–start daily cycle. Other plants with 
higher thermal inertia are slower and can only operate on a weekly cycle, stopping and 
starting once a week. The thermal constants of the boiler impose the speed with which 
the power plant can vary the generation level. Thus, each plant has its own characteristic 
of ramp-up or ramp-down.

In addition to steam thermal power plants, there are two other types of plants based on 
fossil fuels. One of these is the gas turbine power plants, in which turbines gas is burned 
with air under pressure and the turbine converts the high temperature and pressure into 
mechanical energy converted into electricity by the power generator coupled to the same 
axe. The other type of thermal power plant is the combined-cycle type. This type com-
bines a closed-loop steam cycle turbine with an open-cycle gas turbine. The main cycle is 
the gas turbine cycle, in which a compressor, coupled to the turbine axe, absorbs, com-
presses, and injects air into the combustion chamber. The hot gas expands in the turbine, 
making the first extraction of mechanical energy. From this first stage, the resulting gas 
that remains at a relatively high temperature is used to produce steam and operate the 
steam turbine, taking full advantage of the calorific value of fuel. The combined-cycle 
power plant has a high efficiency of about 60%. The plant also has the advantage of 
 flexibility—it can operate with a fast start or fast ramping similar to typical gas turbines. 
In terms of operation, a combined-cycle power plant can have a cold start in just 1–2 h, 
but if needed, this time can be just a few minutes starting as a simple gas turbine. For this 
reason, and for economic and environmental advantages associated with the use of 
 natural gas as fuel, the use of the combined-cycle plant is growing. The good competition 
of investment and operating costs makes a combined-cycle power plant a very interesting 
solution for countries that have natural gas available with some security of supply.

Nuclear power plants are large-sized generation units, with about 1000 MW, in con-
trast with other thermal power plants with a typical size of 500 MW. There are power 
plants that produce at a constant pattern, because of the dangers of the variation in the 
operation conditions of the refrigeration system. Basically, a nuclear power plant con-
sists of a nuclear reactor based on a fission process producing a lot of heat. This heat is 
extracted through a heat transfer fluid and is transferred through a heat exchanger to a 
steam circuit. Steam thermal energy is converted first into mechanical energy and then 
into electricity as in the conventional steam power plants. For reasons associated with 
the risk of failure of the cooling system, nuclear plants have very little flexibility: they 
can never stop and production can vary with very slow rates. For this reason, they have 
very important restrictions for scheduling optimization; it is not an easily controllable 
variable despite being a thermal generation. However, in market environments, 
 scheduling is very influenced by nuclear generation, through its influence on market 
prices. This influence may be direct, when markets integrate nuclear generation, or 
 indirect, when the price signals appear in the electricity import transactions with 
 neighborhood markets and networks. During off-peak periods, the price signal influ-
enced by nuclear generation can be very low. In fact, these prices are not the cost of 
generation with nuclear but the cost associated with the risk of nongeneration.
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For the scheduling problem, specific characteristics for each thermal unit are required:

• Maximum generation limits (MW) correspond to the maximum overload opera-
tion of the power plant; generally, the specific fuel consumption is high for over-
load operation and optimization avoids these extreme operation points.

• Minimum generation limits (MW) correspond to the minimum value required to 
guarantee the thermal stability of the boilers.

• Start-up time (h) is the time to start the power plant until it reaches the minimum 
generation. It can be a nonlinear curve as a function of the initial boiler tempera-
ture. Lower boiler temperature corresponds to a higher start-up time.

• Ramping-up limits (MW/h) correspond to the maximum power that can be taken 
up per hour. It can be a nonlinear curve, with lower ramping values when the 
boiler is colder.

• Ramping-down limits (MW/h) correspond to the maximum power that can be 
decreased per hour. It depends on the inertia of the boiler and the capacity of the 
refrigeration system. Larger boilers generally have more restrictive ramping-
down limits.

• Specific fuel consumption curve (m3/h) is generally a quadratic polynomial curve 
as a function of the power operation point. It reaches the maximum efficiency for 
the nominal power.

• Fuel consumption (m3/h) in stand-by mode is the fuel consumption without 
power production to keep the power plant ready for a hot start.

• Start-up fuel consumption curve (m3) is a nonlinear curve as a function of the 
temperature of the boiler. A lower boiler temperature corresponds to higher start-
up fuel consumption.

This scheduling optimization depends on thermal generation, because this genera-
tion states the main operation cost of the power system in relation to fuel consumption. 
The cost of fuel consumption depends on the price of the fuel used by the generation unit 
and on the efficiency characteristics of the generation unit. Generation costs of the ther-
mal power plant can be computed based on the fuel consumption and the cost of fuel. 
The resulting fuel cost is often referred in the literature approximated by a quadratic 
curve; however, due to varying conditions at certain levels of generation, like open or 
close step level valves, the real relationship between power operation point and fuel cost 
may be more complex than a quadratic equation [8,9].

1.2.3  Hydropower Generation

Hydropower generation involves the potential and kinetic energy on the water that flows 
in the rivers. The conversion of hydraulic energy into mechanical energy is done by a 
hydraulic turbine, and the conversion of mechanical energy into electrical energy occurs 
in an electric generator [10].

Hydropower is an important source of renewable energy. The most mature of 
 renewable technologies, it provides significant added value in the control of the power 
system, it can be used as a base load and peak, and it is the most important energy stor-
age technology in big power systems. The initial capital costs are high, but operation 
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and maintenance costs are very low. Hydropower generation is a very simple and robust 
technology with a long service life and high reliability. Hydropower turbines have a 
very fast ramp-response technology with the ability to do a black start and, for  reversible 
groups, to change from generation to pumping mode. All these characteristics make 
hydropower one of the most interesting technologies and one of the most important for 
power system control and scheduling optimization.

With regard to the size of generation units, hydropower plants have a range of capaci-
ties from very small hydropower with several kW to more than 10 GW. In this book, we 
are mainly interested in big hydropower plants ranging from 10 MW up to 10 GW. But 
we are also interested in small hydropower plants, ranging between 100 kW and 10 MW, 
generally operated by independent power producers.

With regard to the regularization of hydraulic flow, there are three main types of 
hydropower plants. The first type is the run-of-the-river plant that can store small quanti-
ties of water and shows little regularization of the flow. For this kind of hydropower plant 
generation is considered, in the scheduling problem, as an almost independent variable 
that depends on the water flow and meteorology. The second type is the storage plant that 
can store large quantities of water and thus regularizes the flow through the plant on a 
daily or seasonal basis. Large storage dams in relatively small-flow rivers have a higher 
capacity of regularization, but the annual energy production is low and,  consequently, the 
leveled electricity production cost is high. The third type is the pumped storage plant that 
is based on a reversible turbine, pumping during off-peak from a lower reservoir to an 
upper reservoir, storing energy for later generation during peak hours. This third type of 
plant is in fact a particular case of the second type. From the  perspective of operation, 
pumping energy is an interesting solution if the differences of prices between peak and 
off-peak are high enough to compensate for the losses in the  pumping-generation cycle.

The generating capacity of a hydroelectric plant is a function of the head (m) and flow 
rate of water (m3/s) discharged through the turbines. The efficiency of the plant is another 
important aspect that depends on the length and size of the ducts, but it depends essen-
tially on the type of hydraulic turbine. The typical efficiency of a hydraulic turbine is 
very high, higher than 95%, and this high efficiency can be obtained between 20% and 
125% of the nominal turbine flow.

There are several types of hydraulic turbines, and these are based on the head and 
flow rate. There are two classifications of hydraulic turbines: impulse turbines and reac-
tion turbines. Impulse turbines use, at atmospheric pressure, the kinetic energy of high-
velocity jets of water striking spoon-shaped buckets on the runner. The most common 
impulse turbines are the Pelton turbines that are struck by perpendicular jets. There are 
also the Turgo or cross-flow turbines that are struck by diagonal jets. Impulse turbines 
are used for high heads, ranging between 50 and 500 m, but with low flow rates of up to 
2 m3/s. In a reaction turbine, the water passes from a spiral casing through stationary 
radial guide vanes, through control gates, and onto the runner blades at above 
 atmospheric pressures. There are two categories of reaction turbines: the Francis and the 
propeller. Both turbines may be arranged in bulb, tubular, slant, and rim generator 
 configurations. In the Francis type, the water impacts on the runner blades tangentially 
and exits axially. The propeller type can be based on a fixed blade known as Kaplan type 
or on variable pitch blades known as double-regulated type. The Francis turbine is used 
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for medium-range heads, between 10 and 300 m, and for medium-range flow rates, 
between 1 and 15 m3/s. The propeller turbine is used for low-range heads, between 3 and 
30 m, and for high-range flow rates, up to 50 m3/s.

The hydropower plants have an important role in the control of the power system. They 
can produce power with the same high efficiency, having the advantage of flexibility with-
out a decrease in the efficiency. Another important advantage is the ability of a quick start 
and a fast variation in generation justifying the role of hydropower plants in the control 
of primary and secondary reserves. Moreover, hydropower plants combine the advantage 
of fast flexibility with high inertia, supporting the stability of power systems.

Different operating strategies are used in hydropower plants, depending on the 
hydrological seasonal period. During periods of heavy rain, when reservoirs are at their 
maximum, the maximum possible power can be generated in order to avoid wasting 
water. During these periods, thermal power generation is replaced with hydropower as 
much as possible to avoid fuel costs even in off-peak hours. During seasonal shortage of 
water, hydropower generation is minimized, being used only in cases where the produc-
tion cost is very high. In the intermediate seasonal period, production is controlled in 
order to produce power in the maximum head. It is in this intermediate period that 
schedule optimization can make the most of hydropower. Optimization of the value of 
hydropower is achieved by replacing the most expensive generation technique during 
the hours with high energy price [11].

To optimize scheduling, information about the characteristics of hydropower plants 
is required. These characteristics are as follows:

• Predicted water inflow in each period (m3/s) is not a characteristic of the hydro-
power plant but is an essential independent variable associated with each plant.

• Downstream minimum flow rate (m3/s) is the minimum ecological or reserved 
flow restriction that must be guaranteed downstream for different periods. We 
admit that this flow can pass through the turbine.

• Derived flow (m3/s) is an ecological, irrigation, or reserved minimum flow that 
cannot pass through the turbine. It can be specified for different periods.

• Maximum generation limits (MW) correspond to the maximum of the hydraulic 
valves, up to 125% of the nominal capacity.

• Minimum generation limits (MW) correspond to the minimum of the acceptable 
efficiency of the turbine, approximately 20% of the nominal capacity.

• Generation efficiency curve (%) is the efficiency as a function of the flow rate 
(m3/s); it aggregates efficiency in the turbine and loss in the penstock and valves as 
a function of the flow rate. The curve is nonlinear and can have some irregularity 
due to multiple water injectors.

• With or without a head regularization scheme, not all power plants are barrage 
type with the capacity of direct regularization at dam intake. There are hydro-
power schemes with a canal and forebay tank upstream the penstock; in these 
cases the head is always the same, independent of the level of water in the dam. 
The power production is a direct function of the head value for each instant.

• Head/volume curve shows the volume reservoir characteristics. With this curve it is 
possible to estimate the head in each instant as a function of the inflow and outflow.
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• Minimum gross head (m) or minimum volume (m3) is used as a minimum-level 
restriction for the generation of power, as the hydropower plant should not 
 produce less than minimum power.

• Maximum gross head (m) or maximum volume (m3) is used as a maximum-level 
restriction for the generation of power and to estimate water losses through the 
spillway.

• Minimum and maximum pumping flow limits (m3/s) are used as restrictions to 
the pumping decision variables.

• Curve of pumping efficiency (%) is the efficiency of the generator turbine, 
 operating in reverse mode; it is a curve of efficiency as a function of the reverse 
flow rate (m3/s). This curve is used to compute the energy consumed for some head 
and flow operation points.

The optimal scheduling of hydropower production differs from the optimization of 
thermal power production. The optimization of an individual hydropower plant has as 
its first objective the minimization of wasted water and as its second objective the maxi-
mization of generation efficiency. The minimization of wasted water is achieved simply 
by generating the maximum possible power, restricted to constraints of the hydropower 
plant. Maximizing the efficiency can be reached by generating power at the maximum 
possible head and with flow rates that maximize turbine efficiency, but far more impor-
tant than individual optimization is the optimization of the overall hydrothermal sys-
tem. The value of hydropower in the overall system depends on the cost of replacing the 
most expensive thermal power generation for the periods with higher energy prices, in a 
market context. This is discussed in more detail in Section 1.3.

1.2.4  Wind Power Generation

Wind power generation is a new renewable and dispersed generation technique that has 
reached maturity and is becoming one of the most important types of power generation 
in countries such as Denmark, Spain, Germany, and Portugal [12]. In some of these 
countries, for windy days, energy generation reaches a percentage of the total load higher 
than 80%. This is obviously a challenge for the control of power systems because of the 
variable nature of wind power. High wind power penetration is in fact the great motiva-
tion for the discussions covered in this book. It is also the reason for new paradigms of 
power system operation.

For the purpose of this book, it is important to understand the technical aspects of tech-
nology that condition the impact, integration, and control of power systems. The geograph-
ical variability and dispersion of a resource are important characteristics that attenuate the 
impact on power systems. The greatest problem is the intermittence, when the wind farm is 
instantaneously disconnected from the grid. Reconnection is not a problem because it is a 
gradual increase of generation from zero to the maximum  possible. The other problem is 
the variability. Wind cannot be stored; we can generate wind power when it is available or 
we can control the generation only by wasting,  generating less than possible, which is not an 
intelligent strategy. To understand the interaction of wind power with the electric grid we 
will describe the main technical characteristics of wind power technology [13], dividing the 
discussion in terms of the concepts of wind turbine and wind farm.
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Because wind is a dispersed resource, it needs to be collected by dispersed wind energy 
conversion units. These units have been suffering a convergent evolution to the present 
aspect of the propeller wind generator, with three blades, collecting wind power from a 
typical swept area of 6000 m2, which is then converted into electricity by electric genera-
tion located in the nacelle mounted in a tower at 100 m. This is the typical aspect of a big 
wind generator, with an approximate rate power of 2 MW. In fact, generator capacity can 
range up to 6 MW, but the most versatile size to be installed in mountain areas is 2 MW. 
For offshore wind farms, there are other installation problems and the optimum size can 
in fact reach 5 MW. Wind turbines are electrically clustered in wind farms, with sizes 
that range from a few megawatts to a few hundred megawatts. A wind farm concentrates 
the power in a wind farm substation connected to the grid at 30–150 kV. At a regional 
level, wind farms can be clustered interconnecting several substations. As it is natural, the 
geographical concentration of wind farms is patterned by the geographical availability of 
wind resources, usually more intense on mountain regions [14].

From the electrical perspective, wind turbine technology has been developing since 
the last few decades from simple constant-speed turbines to fully variable-speed sys-
tems, enabling active output control. For the constant-speed category, the rotational 
speed of the electrical generator is imposed by the electrical grid frequency and, at most 
wind speeds, the turbine operates below its peak efficiency. The variable-speed category 
use of power electronic converters decouples the grid frequency from the rotational fre-
quency of the generator imposed by the wind speed; this allows more flexibility in the 
wind turbine control system for frequency, voltage, active and reactive power, and opti-
mization of performance and efficiency. Decoupling of the electrical and rotor frequen-
cies absorbs wind speed fluctuations, allowing the management of kinetic energy and 
using the wind generator as a flywheel, thus smoothing power and voltage. Another 
evolution in wind generators is the active pitch control system on blades—an alternative 
to stall control, which is a fixed blade aerodynamic control. The pitch control allows full 
control of the aerodynamic power of the turbine.

Wind farms are a cluster of wind turbines that are connected to the grid in a single 
power plant. This is the concept of a virtual power plant that responds in the same way 
as a thermal or hydropower plant. This concept aims at the wind power plant providing 
ancillary  services in addition to power production. The idea is to control actively the 
ramping-down and ramping-up; however, this can only be done by sacrificing the per-
formance of the wind farm.

There is effective development in regulating the control capabilities at wind farms. This 
is implemented based on grid codes, stating the specific rules and limitations in the opera-
tion variables for wind power plants. The grid codes vary from country to country but in 
general there are rules related to: active power control, frequency control, voltage control, 
frequency range, voltage range, tap-changing transformers, and wind farm protection. The 
active power control and wind farm protection are  especially important for scheduling.

The active power control is basically ramp rate limitations, positive ramps, and even 
negative ramps of active power output. The objective is to mitigate frequency  fluctuations 
caused by extreme wind variations or by shutdown and startup of wind farms. To 
 maintain the power balance, ramps in wind power generation are limited by symmetri-
cal ramps in dispatchable power generation available in power systems. Positive ramps 
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in wind power generation require a negative ramp response in thermal and hydropower 
generation; the typical value is 10% of rated powers per minute. Negative ramps in wind 
power generation require a positive ramp in thermal power generation, which is gener-
ally slower with typical values near 5% per minute. Systems with higher integration 
levels of wind power require more severe and lower ramp limits. In normal operation, 
wind variability is lower than 2% per minute for a typical 20 MW wind farm. However, 
with extreme winds, wind generators are disconnected for safety and negative ramps 
can be higher than 5% per minute. Fortunately, the disconnection time of wind 
 generators can be controlled and the problem can be mitigated with adequate wind-farm 
control procedures. In the same way, forcing the generation to a maximum is also 
 possible and useful when the system has high wind penetration, but it must respect the 
negative ramp limits. The startup of the wind farm is not a serious issue because it is slow 
and easy to control in the generator and in the sequencing of wind turbine startup.

The forced shutdown of the wind farm could be a serious problem. A frequency or 
voltage drop in the network, caused by a severe fault in the electric network, can result 
in an outage of the wind farms in a vast area, thus inducing a cascading outage of the 
system and a complete blackout. The problem is not in the wind farm itself but in the 
protection of the wind farm that disconnects the wind farm from the grid. The  protection 
is parameterized to actuate in those conditions but in the case of faults occurring far 
from the wind farm, the outage contributes to exacerbating, and not mitigating, the 
problem. To solve this problem, actual wind farms are prepared to remain stable and 
stay connected to the network when faults occur on the transmission network. This is 
known as the fault ride-through capability. The detailed requirements of duration of the 
fault and voltage level often differ between countries. The existence of a fault ride-
through capability allows the reduction of the reserves necessary to maintain the system 
securely in case of a fault and/or high levels of wind generation.

The variability of wind resource is clearly the most important issue for the scheduling 
of wind power generation, with high penetration of renewable energy. But not all vari-
ability of wind resource is important. For very short time intervals, up to 30 min, the 
synchronous variations in wind farms are uncorrelated, and they cancel out. For wind 
resource, variations of up to 30 min could have an impact on the secondary reserve. This 
impact can be mitigated with ramp control measures in wind power generation, with 
some but not significant losses in generation performance. Another solution is to 
increase the secondary reserve in about 5% of the wind power capacity. This is a better 
solution for low levels of capacity penetration in the system.

The scheduling of thermal and hydropower plants is only affected when the variation 
is in the time scale of hours to days. The hourly variation depends on the geographical 
extent of the system: the correlation of wind resource decreases with distance, but in 
areas of less than 500 km2 the simultaneous generation is still significant. For a region of 
500 km2 there are frequent variations of 10% of the wind power capacity per hour. This 
scale of wind power variation and impact requires efficient forecasting. However, even 
the best wind power forecasting can have frequently an absolute error of more than 30% 
of the installed capacity each day of the forecast, but the average error is about 10%. This 
error decreases significantly for forecast time horizons with less than 4 h, with an aver-
age error near 5%. Thus, scheduling must be revised on the basis of forecast and real 
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information whenever possible. The uncertainty in wind power forecast causes uncer-
tainty in scheduling, and consequently has extra costs in secondary and tertiary reserves 
needed to mitigate the variability. Reducing the scheduling horizon from a day ahead to 
6 h ahead can reduce the need for tertiary reserves in 50% of cases, but generally in a 
market context we need scheduling at least a day ahead.

Wind forecasting can be done for each wind power plant, for each region or for the entire 
system. For generation scheduling, only a forecast for the entire system is necessary. For 
scheduling a day ahead, the wind power forecast simply uses meteorological-based fore-
casts without integration of real-time measures of wind power generation. This forecast can 
be refreshed every 6 h with new meteorological information. For scheduling for the next 
6 h, the integration of real-time wind generation measures is an important added value to 
reduce uncertainty. A forecast of extreme wind conditions is also very important in order 
to detect fast decreases in generation due to the disconnection of wind power plants.

1.2.5  Other Nonscheduled Power Generation

Wind power and run-of-the-river hydropower generations are technologies for which 
we have little capacity of scheduling. In fact, these generation technologies are indepen-
dent variables for scheduling. To overcome the problem a good forecast is needed. But 
these are not the unique nonscheduled technologies. There are also the solar photovol-
taic power [15], concentrated solar power (CSP) [16], wave energy [17], and other forms 
of generation that depend on the availability of the resource [18]. More generation types 
are nonscheduled because the power system is not controlled. This is the case of inde-
pendent producers of cogeneration and biomass and geothermal power plants. These 
technologies are controllable thermal-based technologies, but because there are inde-
pendent producers the system operator cannot schedule these generations and, from the 
perspective of the system operator, these generations are independent variables that 
must be forecast. There is also, in a market context, some loss of control: some power 
plants that are technically controllable result in independent variables that must be 
treated by forecasts where the main drivers are the market prices forecast.

Power from renewable energies, such as photovoltaic, wind, or run-of-the-river 
 hydropower, is always described as an intermittent energy source. For wind and small 
hydropower generation, it is more correct to classify the technologies as variable output 
power sources instead of intermittent sources, because the power from these technologies 
does not start and stop on the basis of a minute time scale. However, for photovoltaic 
power plants, the term intermittent fits well because cloud shadowing can abruptly change 
the production. On the second to minute timescale, contrary to wind or hydropower, 
solar power can have a strong impact on reserves, even on primary reserves. This occurs 
because of the fast and deep effect of cloud shadowing, with a change in generation that 
can vary up to 80% in a few minutes for photovoltaic power and even a deep variation for 
concentrated photovoltaic power. For example, in the 46-MW capacity power plant in 
Moura, Portugal, a change of 40 MW in less than 1 min was registered, with a change in 
production from 45 to 5 MW, due to a simple and intermittent shadowing of clouds. 
Photovoltaic technologies instantaneously convert irradiance into electricity; this change 
in irradiance causes immediate changes in power generation. If the power production of 
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the photovoltaic technology is more sensible to beam irradiance then the variation effect 
will be deeper, as is the case in concentrated photovoltaic power.

Photovoltaic power generation, although still relatively small, is growing fast. 
According to the International Energy Agency trends in 2020, 1% of the electricity con-
sumed in the world will be produced by photovoltaic power, with an installed capacity 
of 200 GW worldwide. At present, more than 1900 large-scale photovoltaic power plants 
(with more than 200 kWp each) are installed worldwide. The cumulative power of all 
these photovoltaic power plants is more than 3600 MWp and the average power output 
of a plant is slightly more than 1800 MWp. More than 500 large-scale photovoltaic 
plants are located in Germany, more than 370 are in the United States, and more than 
750 are in Spain. With information about very short-term forecast, the variations in 
photovoltaic power could be softened by anticipation actuating in the set points of the 
inverters. Inverters can easily control the ramping-up, but the ramping-down is only 
possible with information from a very short-term forecasting system.

A CSP plant uses the same principle as a thermal power plant, but using solar radiation 
as a source of heat. To achieve the high temperatures needed for an efficient energy conver-
sion, optical concentration reflectors or lenses are used to concentrate the solar irradiance. 
Systems with high concentrating rates operate at high temperatures that can reach more 
than 1000°C in turbines. For technologies with high operation  temperatures, heat is con-
verted into mechanical energy by a steam turbine, followed by conversion into electricity 
by an electrical generator. For technologies with low temperatures and low concentrating 
rates, heat is converted into mechanical energy by a small-sized Stirling engine. There are 
several variants of CSP technology with different concentrating levels, designs, and sizes, 
namely, parabolic trough designs, power tower designs, dish designs, Fresnel reflectors, 
Fresnel lenses, and others. CSP technology is still in early  development, but it uses medium-
sized power plants with more than 50 MW. Because of the need for high solar resources it 
is expected that this technology will be installed in deserted or scarcely inhabited regions. 
This potential for installation causes high correlation of  production, amplifying the prob-
lem of the strong variability of this kind of generation. For CSP, because it only captures 
beam irradiance, this intermittence is more abrupt, changing from the maximum produc-
tion to zero in some seconds. In this type of solar power plant it is important to know the 
evolution of shading on the reflecting mirrors in order to avoid large variations in energy 
received at the solar receiver. Under normal temperature radiation, the receiver operates at 
a temperature of 800°C, but the  temperature drops dramatically and very fast when there 
are shadows, and when the sun is beaming directly again, the temperature rises almost 
instantly. This can take the receiver to a solar thermal shock, permanently damaging the 
system. For CSP, the impact of fast variations can be solved by managing heat storage or 
the alternative energy source of the solar plant (e.g., natural gas). But the very-short-term 
forecast is essential for the management of CSP plants.

The trend of high penetration of solar power in the electric grid makes it necessary to 
integrate this generation type in the power system scheduling, and advanced and 
 innovative forecasting tools are necessary to solve the intermittence and variability of 
solar power generation. Even on a clear day, without the effect cloud shadows, for sunrise 
and sunset, the solar-based generation varies 80% in 1h, simultaneously, for all solar 
power generation in the system. Clearly, with the growing popularity of this type of 
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generation, this is a great challenge for scheduling. The possibilities and detailed 
 strategies for managing intermittent-output solar power vary between national and 
regional power systems. Like any other form of power generation, solar power has an 
impact on power system reserves. It also contributes to a reduction in fuel usage and 
emissions. The impact of solar power depends mostly on the solar power penetration 
level, but it also depends on the solar power system size, generation capacity mix, and 
the degree of interconnection to neighboring systems and load variations. This impact is 
more critical for islands with a high penetration of solar power.

Methods, tools, and services for short-term forecasting of solar power on an hourly 
basis are available. These forecasting models are based on a mix of analytical forecast 
models, to model generation for clear days and to integrate meteorological information 
about solar radiation, cloud coverage, and temperature.

1.2.6  Storage Technologies

Storage is not a generation technology, but in fact sometimes storage technology gen-
erates electricity and can play an important role in the scheduling of power genera-
tion. The storage and load control are another form of matching the supply to the 
demand over a wide range of time periods. There are a wide variety of storage tech-
nologies [19]: pumped hydropower, heat storage, flywheels, batteries, fuel cells, regen-
erative redox  systems, super capacitors, and compressed air. However, generally, all 
technologies are expensive and some inadequate and inefficient for long-term storage, 
from a few hours to a month. There are two kinds of storage applications in electrical 
systems: dedicated storage that is only used with this objective (e.g., pumped hydro-
power, flywheels, super capacitors, CSP heat storage, regenerative redox systems) and 
nondedicated storage that is dedicated to other kinds of applications but can be used 
to produce electricity when it is free from the main application (e.g., electric vehicles, 
cogeneration heat storage, backup storage systems). The use of dedicated storage sys-
tems normally results in an overall loss of energy, with efficiency commonly about 
80%. Nondedicated storage has lower efficiencies because it is not optimized for this 
purpose, but it is the use of an available resource creating an important added value, 
for instance, for owners of electric vehicles, that offer the storage service, and for the 
electric grid, that uses this service.

Pumped hydropower is the most common and best-known technology for energy 
 storage in power systems [20], and in fact it is the only large energy storage technique 
 available in power systems. Pumped hydropower is usually composed of an upper  reservoir, 
penstock or waterway, a pump, a turbine, a motor, a generator, and a lower reservoir.

The pump-turbine and generator motor can be composed of four, three, or two units. 
The three-unit set integrates a reversible generator-motor, the turbine, and the pump in 
the same shaft. The two-unit configuration integrates a reversible generator-motor and 
a reversible pump-turbine in the same shaft. The Francis turbine is the most common 
reversible pump-turbine. The complete hydropower storing cycle has an efficiency 
between 70% and 85%. Due to the low energy density of pumping storage, large reser-
voirs are needed to store significant energy; the size is reasonable for daily or weekly 
storage, but for monthly or seasonal storage the area of reservoirs is extremely large.
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For scheduling optimization, we need to know the minimum and maximum flow 
limits, the head difference between upper and lower reservoirs, the curve of relation 
between head and volume of the upper reservoir, and the curve of efficiency of the 
reversible group as a function of the pumping flow.

The future role of electric storage technologies, such as battery and fuel cell systems, 
will depend on the development of the technologies. Electric storage is very expensive 
because of the material used; in fact, the complete life-cycle use of the energy stored is 
more expensive than the cost of generation. Thus, dedicated storage of electricity does 
not provide a solution in the short term. However, electric vehicles [21], working in a 
vehicle-to-grid mode could be an interesting storage solution, without additional cost 
for the power system and with advantages for the owners of the vehicles. An electric 
vehicle with typical autonomy has capacities of about 20 kWh and can charge and dis-
charge this energy in a daily cycle. This capacity of 20 kWh is a typical daily consump-
tion for one big house. This means that in a future scenario where most people have 
electric vehicles the owner will have a storage capacity for almost 20% of the daily power 
system generation. This could be very valuable for a daily power system balance, but this 
must be controlled indirectly by sending the right electricity price signal.

Another storage technology is thermal storage [22]. In a future scenario with high 
penetration of CSP technology, there will be large thermal storage based on several 
 technologies such as pressurized steam, graphite heat storage, and phase change materi-
als like molten salts or other inorganic or organic materials. Storing heat could be an 
interesting solution for all kinds of thermal power generation with high temperatures. If 
the temperatures are low the reversal of heat energy to electricity will be inefficient. Note 
that the average efficiency of the best thermal electricity generation is lower than 50% 
due to heat energy losses. For scheduling, the stored heat results in electricity genera-
tion, but this generation must be forecast as an independent variable that results from 
the operation strategy of the storage.

Another interesting form of nondedicated heat storage is available in the combined 
heat and power plant (CHP) [23]. A power system with a high level of penetration of 
CHP has the flexibility to manage, by sending the right price signals, the generation of 
electricity or heat. For hours of excess generation, CHPs receive signals to reduce 
 generation and use thermal storage for heat; in this way, they can balance the electricity 
energy responding to the grid and balance the heat energy according to their internal 
needs. In this case, the heat does not need to be converted back to electricity because it 
is used in internal heat processes, having the advantage of a high efficiency for the over-
all process. For scheduling, the modeling of heat storage is done based on independent 
variables that result from the strategy of the operation of the CHP.

1.3  Operation of Power System Generation

1.3.1  Power Generation Control

The power system is controlled mainly at the point of generation, directly in the genera-
tion equipment or indirectly by defining the scheduling of generation and interconnec-
tions. The system is controlled by automatic control actions in the generation units, by 
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control action signals sent by power plant operators or system operators, and suggestion 
or price signals sent by system operators or market operators [24]. The control signals can 
be either generated automatically by a knowledge system or sent after the case analysis by 
direct human decisions.

There are different types of power system organizations including systems with 
 centralized control and those isolated from other systems. These power systems are a 
single control area and have only two levels of control: control in the generation units 
and control of the whole system. Most power systems control their own areas but have 
strong interaction and dependency of other control areas. These dependencies can be 
hierarchical, receiving exchanging control signals, or market dependent, with restric-
tion of compliance at the level of market transactions. In these cases control exists at 
several levels: control in the generation units, control of the whole system, control in 
interconnections, and indirect control based on information from the market and from 
decisions of independent agents (e.g., independent power producers, market agents).

The primary priority driver for control is reliability and secondary priority decisions 
include economic criteria and restrictions. Economic optimization and restrictions are 
predefined conditions of control, but reliability must always be guaranteed with low levels 
of risk. For a monopoly oligopoly system, the economic optimization consists of optimiza-
tion of the overall power system, minimizing the operation costs. In a liberalized and mar-
ket context, the economic optimization of the system operation becomes more complex. In 
this context, there are multiple agents with different conflicts and economic interests. To 
solve this, the market and regulatory schemes must be arranged to guarantee that the opti-
mization of the individual solutions for several agents  converge on the global optimization 
of the power system. This can be reached with adequate exchange of information and eco-
nomic signal between agents. This is also possible with the regulation restrictions applied 
to individual agents, but the solution deviates from its individual optimum. In a deregu-
lated environment the real-time control must always be in an independent system operator 
(ISO) [25]. In real-time operation the system  operator maintains a conventional control 
structure of the power system. The real-time control covers the period that corresponds to 
primary, secondary, and tertiary control, for a control horizon inferior to a few hours.

1.3.2  Scheduling

Scheduling generation is a planning process that specifies how the generation resources 
should be used to comply with security and economic criteria. As it is a planning process 
scheduling is done in advance and that is called the “scheduling horizon.” Scheduling 
must provide information about

• The generation unit that will be spinning
• The amount of energy that will be generated when the unit is spinning
• The cost of this resource
• The uncertainty related with the availability of the resource
• The extra potential and services that the generation unit can provide if needed

The scheduling process is based on optimization algorithms, by optimizing the use of 
resources, based on economic criteria, subject to technical, security, environment, and 
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regulatory restrictions. These algorithms integrate independent variables related to dif-
ferent kinds of predictions, including predictions of energy resources (wind, solar, and 
hydropower), consumption, market prices, and behaviors. Predictions are used when 
variable behavior cannot be explained by analytical models. For instance, in a market 
environment the generation behavior of other competing agents needs to be predicted 
when there is direct access to inside information about the rules that drive these  behaviors. 
The scheduling algorithms, as any other optimization algorithm, should integrate 
 uncertainty modeling. The uncertainty is intrinsic to any modeling that is based on fore-
casting and it is essential for the decision process. In the scheduling decision process, at 
the end, only one optimal solution is chosen; it is common for the agents to neglect the 
uncertainty. However, because in real scheduling there is uncertainty, in order to deter-
mine the optimum solution the agent needs to know the risk of not obtaining the optimal 
solution. Obviously, this kind of scheduling, with uncertainty modeling, needs an agent 
to decide between solutions or alternatively needs a decision system with decision rules.

Scheduling algorithms include several modules: unit commitment, economic 
 dispatch, security constrained analysis, reserve assessment, reliability assessment, 
 forecasting, market clearing, and risk analysis. Some of these modules will be intro-
duced in this chapter, but they will be presented in detail  in Chapters 2, 6 through 11 of 
this book.

1.3.3  Reserve Requirements

Because of the uncertainty and dynamic changes in real power systems, to have one 
scheduling solution is not enough. The power system needs to maintain a certain amount 
of operating reserves to run the system in a reliable and secure manner. There are several 
levels of reserves that respond to different time horizons. The operating reserve can be a 
regulating reserve, to guarantee the normal load and variable generation that follows. 
There can also be a contingency reserve, to guarantee the security of the system when a 
contingency occurs. The reserves can also include a spinning reserve, from generators 
that are spinning, and a complementary reserve, from generators that need to be started. 
The reserves are resources that can be controlled; usually they are generation based but 
they can also be consumption based, associated with interruptible loads, demand 
response, or consumer generation.

From the perspective of responsiveness of control, reserves are classified as primary, 
secondary, and tertiary. The first two kinds are used as contingency reserves and the 
third is used more for regulating control. The primary and secondary reserves use essen-
tially spinning reserves and the tertiary reserve uses more complementary reserves. The 
consumption-based reserve controls are used mostly for tertiary reserves.

The primary reserve is the reserve needed for primary control that must respond in 
less than 30 s. This primary reserve is in kinetic energy, in the generation units, and in 
other forms of energy that are ready to be fed automatically by the power plant. The 
amount of primary reserve allocated in the power systems is determined by the reliabil-
ity of the system, more specifically by the risk of fault in the generation system. For 
instance, it can be the capacity of the largest generation power plant in the area of 
control.
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The secondary reserve should cover faster imbalances resulting from the primary 
control; it must start to react fast, between 30 and 60 s, providing the extra energy 
required to restore balance. The frequency deviation resultant from the primary  control 
is used by some of the faster generators in the area for automatic generation control. 
The control signal uses the accumulated frequency deviation called area control error. 
The fast generation in the control area is used as a secondary reserve. The secondary 
reserve is available from hydropower plants, thermal gas turbines, flywheels, and 
 storage batteries. Several generations that are available for the secondary reserve are 
selected by rank order, previously analyzed, because in 30 s it is not possible to run an 
economic dispatch. The quantification of the secondary reserve is done for the value of 
the primary reserve plus the generation with probability to be lost, tripping the 
 frequency and voltage system protections. Note that a primary reserve is only tempo-
rary energy transference; the secondary reserve must restore that energy by injecting 
more energy into the system. For interconnected systems, part of the interconnection 
capacity can be used as secondary reserve.

The variable renewable energies, like wind and photovoltaic power, are not usual as a 
primary or secondary reserve. Also the consumption-based resources, like interruptibil-
ity, demand response, or consumer generation, are not usual as primary or secondary 
reserves. This is due to the fact that these resources are too expensive and complex to be 
used in a mode ready for reserve. However, with the larger integration of variable sources 
in the system, this is becoming an alternative that is being considered and also imple-
mented in some systems. The variable renewable energies can contribute to the increase 
of secondary reserve. It is the case of cascading contingencies, like outages of wind farms 
without fault-ride-trough, disconnected from the grid by actuation of the protections. 
The case of fast cloud-shadow effect in photovoltaic power generation is an operational 
reserve, which is fast but very small compared with the reserve ready for contingencies.

For the tertiary reserve, the variable generation already has a significant impact. The 
main objective of the tertiary reserve is to guarantee the regulating control. The tertiary 
reserve regulates generation by adjusting scheduling. Deviations in scheduling can 
occur because of an error in forecast, a last-time unavailability of some scheduled gen-
eration, a deviation in generation, or a deviation resulting from contingencies. The ter-
tiary reserve needed is not as important as the primary or secondary reserve. But because 
the contingency reserve must be maintained permanently, the regulating reserve (ter-
tiary reserve) is an additional reserve with additional cost. The quantity of tertiary 
reserve is proportional to the percentage of variable generation and its rate of variability. 
Thus, for wind power generation there is 10% variation of the installed capacity. For 
photovoltaic power, there is an 80% variation of the clear-day maximum generation 
limit for that day per hour. For small hydropower plants with regularization tariffs, the 
variation can be 40% of the average daily generation limit. The most  important is the 
variation in the shortest time, which is 15 min to 1 h for tertiary reserve. The typical 
high variation in consumption is less than 30% per hour. Sometimes several variations 
cancel each other, but the variation can also be summed up,  requiring additional reserve. 
The additional tertiary reserve needed is the sum of the variation in load with the varia-
tion in variable generation. High penetration of wind can increase the tertiary reserve by 
5%. The penetration of photovoltaic power is still small in power systems but, because of 
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fast and high variability, for some hours, a tertiary reserve equivalent to 80% of the 
installed capacity is required.

Improving the forecast can be the cheapest solution to reducing the tertiary reserve. 
A good forecast could reduce the need of additional tertiary reserve by 50%. This 
 represents a cost of tertiary reserve of about €5 per variable renewable energy megawatt-
hour generation.

1.3.4  Unit Commitment

Unit commitment is one of the modules of the scheduling process; it defines which 
 generation units will be “on” or “off ” for each hour of the horizon. The algorithm of unit 
commitment optimizes the problem by using mixed integer programming, dynamic 
 programming, or Lagrangian relaxation. The algorithm minimizes the operating costs, 
including the costs of startup, shutdown, and production. The economic optimization is 
based on a ranking of generation units that are in turn based on operation costs of 
 generation, which in unit commitment are discrete for startup and shutdown and linear 
for generation costs. Thus, the optimization result is based on ranking and not on 
 generation allocation, as occurs in economic dispatch algorithms.

The unit commitment algorithm also includes forecast information about load and 
independent generation; these are independent variables of the problem. It also includes 
restrictions like minimum-up and minimum-down time and minimum value for 
reserves. The unit commitment produces a generation schedule for a time horizon that 
is usually from 4 to 48 h, with a time interval between 5 min and 1 h. For long time 
horizons, wide time intervals are used, restricted by computational time requirements. 
The runs are refreshed every time new and more detailed information arrives. The com-
putational effort depends on the number of simulation periods, the number of units, the 
number of restrictions, and the dependencies between periods.

When several types of constraints are included in the unit commitment algorithm the 
module is designated as “constrained unit commitment.” A “reserve constrained unit” 
(RCU) includes constraints about the minimum value of reserves; a “security  constrained 
unit commitment” (SCUC) includes minimum reserve and network constraints; and a 
“reliability constrained unit commitment” (RCUC) includes constraints about genera-
tion and network reliability.

Stochastic unit commitment approaches are very usual in literature, but not so usual 
in practical applications. This happens because these algorithms need to run very fast in 
real time, covering time horizons as long as possible with time intervals as detailed as 
possible; that is why stochastic approaches are very time-consuming. As commented 
previously, the integration of uncertainty in the algorithms is very important to evaluate 
risks and to help to decide between close solutions, but it is only useful if the agents are 
able to decide or if they have rules to help them decide. Thus, it is necessary to find a 
compromise between the detail and the robustness of the solution. Sometimes a model 
with high detail but no uncertainties is used and what happens is that the detail is lost in 
the noise. Or, on the other hand, we can have a robustness indicator by integrating 
uncertainty and risk analysis, but the model is not attractive for the operator because 
enough detail cannot be seen in the solution.
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1.3.5  Economic Dispatch

The objective of economic dispatch is to allocate the generation among several generation 
units in such a manner as to minimize the costs of generation. The economic  dispatch 
problem differs from the unit commitment problem because the characteristic of con-
sumption are nonlinear and, consequently, the optimum is an allocation of  generation 
among the units and not a simple ranking of priority. The optimal unit  commitment solu-
tion results from the best combination of fixed costs, contrary to the economic dispatch for 
which the optimal solution depends on variable (or marginal) costs. One of the results of 
economic dispatch can be the locational marginal prices, which cannot be obtained from 
unit commitment. The optimization of economic dispatch uses as a basis the unit commit-
ment solution, excluding from the optimization the generation units that are off. It is com-
mon to adopt approaches that merge the  problem of unit commitment with the problem of 
economic dispatch using mixed integer programming optimization algorithms. This 
could have advantages because the nonlinear detail in economic dispatch could justify a 
change in the solution of unit commitment. On the other hand, economic dispatch could 
integrate unit commitment costs by combining the fixed costs of generation.

As for unit commitment, economic dispatch can include several types of constraints. 
The “security constrained economic dispatch” (SCED) includes reserve and network 
constraints. In the SCUC, the network constraints are usually simplified or omitted. 
There could also be approaches based on “reliability constrained economic dispatch” 
(RCED), where reliability is checked and, if it is out of the corresponding constraint 
limits, the reserve variables are adjusted. Thus, in this approach the reserves are mod-
eled as dependent variables and not as restrictions, which means that we can optimize 
the reserves for each time interval. Other criteria can also be integrated in the objective 
function, like the cost of emissions for environmental criteria, or the cost of interrupt-
ibility or the value of demand response for demand-side criteria. The costs with network 
losses can be integrated in economic dispatch, but for that we need a simplified load flow 
analysis embedded in the optimization algorithms. With more detailed load flow it is 
possible to integrate the voltage and reactive flow constraints.

1.3.6  Hydrothermal Coordination

For power systems with large hydropower generation, the modules of unit commitment 
and economic dispatch are more complex. Hydropower can change on/off states very 
often and the unit commitment solution could be very dynamic. Consequently, the eco-
nomic dispatch solution is more difficult to reach and has high sensibility to the unit 
commitment solution used as baseline. Therefore, a strong interaction between unit 
commitment and economic dispatch is needed in the algorithms.

Hydropower is characterized by the possibility of storage with higher time period 
dependencies to model water volume regulations. There are also dependencies between 
hydropower units because of the existence of cascading and water flow dependencies 
between them, with more constraints in the problem. All the dependencies lead to a very 
heavy optimization modeling that cannot be desegregated easily in suboptimization 
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multiperiods. Additionally, hydropower systems have pumping units that add complex-
ity with new kinds of variables and restrictions.

The operational cost characteristic of the hydropower plant is irrelevant in the sched-
uling algorithms. But, because one needs to comply with the power balance constraint, 
the optimization of hydropower generation results in the replacement of expensive ther-
mal generation. The restrictions in the hydropower storage capability also restrict the 
advantages of the solution. Long-term storage capability allows better use of the water. 
Systems with long-term storage capability need longer horizons for the simulation and 
optimization or the use of time boundary conditions for water storage levels.

Pumping optimization is based on the difference between electricity prices in the 
pumping and generating instant. From a modeling perspective, pumping is a negative 
generation with a positive cost. This cost is the electricity price or, if unknown, the func-
tion of the generation cost of the system in that period. The use of pumping increases 
consumption in the cheapest electricity price hours. At least, one complete price-cycle 
period is needed for scheduling horizon optimization.

1.3.7  Scheduling with Nondispatchable Generation

Nondispatchable generation involves renewable sources with noncontrollable character-
istics like wind power, photovoltaic power, CSP, small hydropower, and run-of-the-river 
hydropower. Independent power producers are also nondispatchable, notwithstanding 
the fact that they are controllable, like the cogeneration and biomass power plants.

Nondispatchable power is modeled in scheduling algorithms by independent vari-
ables. These independent variables are forecasts. Forecasts of renewable sources are 
based on meteorological forecasts with a 7-day time horizon, with a 15-min interval, 
refreshed four times a day. For very-short-term forecasts, less than 6 h, real measure 
information can be used as inputs of time series forecast. This nondispatchable model-
ing for scheduling, using forecast, is very similar to the traditional load modeling. 
When independent information is unknown it is necessary to rely on forecasts. This 
also happens for the independent power producers, for consumer response, and for 
generation from other agents with restricted information. For all these cases we need to 
forecast behavior, which generally is predictable because it responds to known and 
accessible independent variables.

1.3.8  Scheduling in a Market Context

In a market context, scheduling needs different modeling [4,26]. First of all, there are no 
unique agents with unique objective functions. There are multiple agents with multiple 
and noncommon goals. The market mechanisms and regulations resolve this issue with 
restrictions that force the convergence of individual goals and the common global goal. 
These restrictions are applied equally to all optimization perspectives for different 
agents. The different agents include the energy generation and distribution companies.

In a market context, based on spot market, generally there are the day-ahead markets 
and the intraday markets. Several intraday markets occur on the operating day and 
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some even occur on the previous day. For each market, the corresponding bid is submit-
ted some hours before the corresponding market clears.

To plan the biding, several market agents need to optimize their own scheduling. For 
generation side agents, the optimization can be from the perspective of a price-maker 
agent, a big-share agent with influence in the clearing price, or a price-taker agent.

Price-maker agents optimize scheduling in order to take advantage of their price influ-
ence capability. The objective is to maximize the accumulated difference between market 
price and generation cost. Market price is a function of the market share of different 
agents and the corresponding generation cost function for that agent. The generation cost 
function is obtained by forecast, inference, or a more complex model if the information is 
available. Price-taker agents cannot influence market price; individual scheduling optimi-
zation is based on the maximization of the integral of the difference between price forecast 
and generation cost.

For demand-side agents, optimization is based on the integral of the difference 
between the cost of electricity acquired in the market and the sum of the income from 
dispersed generation, with the income from the electricity sales to consumers. The mar-
ket price of electricity, the consumption, and the dispersed generation must be forecast 
by appropriated models that will be discussed in Chapters 3, 4, and 5 of this book.

The market operator and the system operator need to do their scheduling, with differ-
ent detail levels depending on the goal. The goal can be to check the constraints, to bring 
about economic optimization, to manage reserves, consumption, and independent 
power producers, and to guarantee reliability. Different types of unit commitment and 
economic dispatch algorithms are used: SCUC, RCU, RCUC, SCED, and RCED.

Scheduling and control actions are carried out at different time horizons. For an oper-
ation in a market context, more phases are needed. The following list describes these 
actions in a progressive close-up approach before and after the moment of operational 
control action.

•	 Close-up	1: 48 h before—market agents collect information about the availability 
of power plants and resources. They need information about independent vari-
ables for their own system and, if possible, information about the system managed 
by competing agents. They also need information about renewable forecast (wind, 
solar, and hydropower), system consumption forecast, availability, and technical 
constraints in power plants.

•	 Close-up	2: 42 h before—several agents prepare and submit the day-ahead mar-
ket bids, using the scheduling obtained in close-up 1. To reduce uncertainty, the 
most recent information about forecasts and generation availability must be 
used. The ISO also receives information about scheduling constraints for each 
unit (e.g., ramping rates, startup costs/times, minimum down-time, efficiency 
curves, etc.).

•	 Close-up	3: 40 h before—the market operator clears transactions for the  day-ahead 
market. The clearing process is done in coordination with the ISO in several steps: 
first, the requirements of reserves are defined based on bids and on generation 
variability; second, resources are committed for the day-ahead market based on 
SCUC; third, an SCED is carried out, finding the optimal scheduling and 
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 complying with generation constraints, network restrictions, and multiperiod 
constraints.

•	 Close-up	4: 24 h before—before starting the operational day, an RCUC is done by 
the ISO, using updated load forecasts and renewable forecasts. In this phase, more 
detailed information about generation, only available for the ISO, could be inte-
grated. After this analysis, the ISO can decide to change the scheduling. 
Mechanisms of compensation exist for deviation relatively to the clearing price.

•	 Close-up	 5: Before each intraday market, 12 h before—the agents redo their 
internal scheduling optimization and use this information to bid in intraday 
markets. The information about errors in forecast and clearing prices in the pre-
vious market session will be very useful. Several intraday markets sessions are 
possible: six is a possible number on the operation day, but in some cases there 
are several intraday markets sessions on the day before the operation day.

•	 Close-up	6: After each intraday market, 8 h before—the same clearing transac-
tions process in close-up 3 is repeated after receiving the bids for intraday market. 
For this phase, more detailed SCUC and SCED are done, providing the informa-
tion about clearing prices and deviations; this information could be used by the 
agents in the next intraday market bids.

•	 Close-up	 7: For each interval in the operation day, 1–4 h before—an SCED is 
permanently refreshed for each short period over the operating day. The schedul-
ing is continuously refreshed (e.g., each 5 min) for the next hours (e.g., 4 h). Note 
that in this scheduling the optimization variables are highly constrained and 
most of the changes occur in the variables related with nondispatchable genera-
tion. This permanent and close-up scheduling adjustment has to guarantee the 
load and the adjustments to a very-short-term generation change prediction.

•	 Close-up	8: Operational control action—it is the instant of generation action for 
which all the scheduling has been planned before. After this instant, the primary, 
secondary, and tertiary controls act to adjust generation deviations.

•	 Close-up	 9: Primary control, 0–30 s after—it is a dynamic control, carried out 
locally by individual synchronous generators, equilibrating the relation between 
rotation speed and grid frequency. This control responds to instantaneous local 
imbalances using kinetic energy in the generators. These imbalances are caused 
by generation or network faults. The energies used for energy balance in primary 
control include the primary reserve, the kinetic energy in machines, and the 
energy feed by a very fast control reaction (less than 30 s).

•	 Close-up	10: Secondary control, 30 s to 15 min after—it is a stationary automatic 
control response, for area or region, with very fast reaction usually in 30–60 s, 
done by automatic generation control. This control responds to frequency devia-
tions resulting from the primary control. The control is done in a decentralized 
way for a specific area, and it is coordinated with specifications of the control role 
and reaction for each generator. Only some of the generators in a region are 
responsible for the secondary control, the other generators follow the frequency by 
using the  primary control. Some fast-reaction generators like hydropower and 
simple gas turbines have an important role in this control. The control signal for 
the area is the area control error which is the accumulated frequency error 
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 measured at some specific points. There are economic mechanisms to adjust the 
deviations relatively to the last economic dispatch; these are part of the ancillary 
services. The energy used to balance the system is the secondary reserve, which is 
the energy controlled by fast automatic generation control, available in some of the 
power plants.

•	 Close-up	11: Tertiary control, 15 min to 1 h after—it is a centralized nonautomatic 
control with the objective to readjust the generation to the dispatched generations. 
The scheduling deviation results from the primary and secondary controls whose 
main goals are reliability and system security. The main goal of the tertiary control 
is to restore the economical optimum scheduling. When the restoration of the 
previous scheduling is not possible a close scheduling solution is adopted. The 
scheduling solution adopted is the one resulting from the SCED that is refreshed 
every 5 min.

1.4  Challenges of Future Power Generation

Power systems have been changing significantly during the last decades and will keep 
changing in the future. The changes occur due to several reasons: environmental obliga-
tions, security of supply, new generation technologies, technological development in 
communications and control, and the need for new market opportunities and 
deregulation.

Growing concerns about environmental issues create the need for power systems to 
change to clean technologies that use renewable resources that are dispersed; consequently, 
the system evolves for small and dispersed generation technologies that completely change 
the structure of the power system and the traditional control of generation. These changes 
have an additional motivation, the security of supply, to comply with consumption growth 
and decrease of fossil energy reserves. These main changes motivate the strong  development 
of new generation technologies, mainly renewable sources that are or will be in short-term 
competition with conventional technologies. At the same time, new communication and 
control technologies have developed, and currently we are assisting a revolution in the 
integration and processing of information in power systems, leading to new paradigms of 
smart grids, smart equipment, and smart control. All these changes, with the tendency of 
decentralization, lead to new opportunities of market and decentralized investment, 
 competitive markets, and a necessity for deregulation or regulation to frame this new 
 economic environment.

In a dispersed generation paradigm, with small generation units, with a multitude of 
different agents, the system is less efficient and much more difficult to control. The great 
challenge of new power systems is to comply with the growing requirement of reliability 
and low price requirements of generation. Solutions to overcome this challenge include 
development of more intelligence in control, collection and use of more information, the 
use of more intelligent components in the power system, the increase in the storage in 
power systems, and the active participation of the demand-side agents.

The control will be done in a different way. Traditional control is mainly centralized 
and with direct actions. New control will be highly decentralized based on suggestive 
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signals for action responses from independent agents. A wide network of information 
will be used to spread these signals. These information networks will be used to collect 
reaction responses and a huge amount of information that comes from every small com-
ponent in the system.

Advanced forecasting techniques are the intelligence needed by the brain of the 
power system to manage these new challenges [27]. Forecast is always used when an 
important influence variable is unknown. In future power system generation, most of 
the influence variables are unknown, including wind generation, photovoltaic gen-
eration, hydropower generation, cogeneration behavior, consumption behavior, elec-
tricity price market, and market agent behavior. Research is being done in some of 
these forecasting techniques, and great effort is needed to improve these advanced 
forecasting techniques. This book is aimed at bringing a new impetus in this 
direction.
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2.1  Introduction

Power generation companies compete in a deregulated energy market to sell the amount 
of power that maximizes their profit. Within energy markets that use power pool trad-
ing, power producers and consumers submit production and consumption bids to the 
independent system operator so that these bids get cleared on the basis of an appropriate 
market-clearing procedure [1]. The clearing procedure is constrained by available trans-
fer capacities and transmission congestion in the power market. For the self-schedule to 
be accepted by the independent system operator, an appropriate bidding strategy should 
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be applied. Conejo et al. [2] describe a framework that price-taker generation companies 
can adopt to construct successful hourly bidding curves. The construction of these 
curves relies on a price forecast and a profit-maximizing self-schedule.

The concept of self-scheduling has recently received attention by the power systems 
community. Yamin et al. [3] argue that, in order to obtain successful generation bids, 
the generation companies have to self-schedule their units by taking into account the 
power flow constraints of both the intact and contingent networks. The formulation in 
the study by Yamin et al. [3] is deterministic in the sense that it uses the nominal fore-
casted locational marginal prices (LMPs) to maximize the company’s profit. It is known 
that a deterministic solution taking the expected price as given will not in general 
 produce the correct expectation as it ignores volatility [4]. Research by Jabr [5] builds on 
that by Yamin et al. [3] by incorporating price volatility in the self-scheduling formula-
tion. This is achieved by explicitly quantifying the risk through a measure that maps the 
loss into a real number. Two measures of risk are common in the portfolio optimization 
theory: Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR). In VaR-based 
approaches, the volatility in LMPs is captured using a covariance matrix obtained from 
historical values of true and forecasted prices. The RiskMetricsTM—Technical Document 
describes methods that are useful for estimating the covariance matrix from historical 
data [6]. In fact, the covariance matrix has been used by power system researchers inves-
tigating risk management within competitive energy markets [1,7,8]. The methodologies 
that use the covariance matrix are fundamentally based on Markowitz’s seminal work in 
the area of portfolio selection [9]. CVaR-based approaches, on the other hand, model the 
volatility in LMPs through the explicit use of a probability density distribution [10]. 
Another technique for treating risk relies on modeling price uncertainty by using fuzzy 
numbers [11,12].

This chapter discusses recent advances in the modern portfolio theory in the context 
of generation self-scheduling. It discusses approaches based on VaR and CVaR together 
with their extensions to deal with the problem of data uncertainty. Data uncertainty is 
considered in the models that specify the volatility in LMPs, namely, the mean vector 
and covariance matrix in VaR-based scheduling and the probability density function in 
CVaR-based approaches. This leads to scheduling models based on worst-case VaR and 
worst-case CVaR. The schedule from each of the models is obtained by solving a semi-
definite program, or, in some instances, a second-order cone program. Second-order 
cone programs are special forms of semidefinite programs that can be solved with effi-
ciency close to that of linear programs [13]. Appendix A2.1 includes an introduction to 
semidefinite programming and second-order cone programming. The robustness of the 
schedules obtained from the risk-averse scheduling paradigms is illustrated with simple 
numerical examples.

2.2  Generation Self-Scheduling

The self-scheduling problem definition was first discussed by Yamin et al. [3]. This defi-
nition postulates several generation companies competing to sell their generated power 
in a pool market. In this setting, a specific generation company is therefore not obliged 
to supply the total forecasted system demand; this task is left to the independent system 
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operator. The generation company aims to supply the portion of the demand that 
 maximizes its profit. To simplify the presentation, only one scheduling period is consid-
ered and the behavior of the power company is modeled as a price-taker.

Each generating unit in the company is assumed to have a convex quadratic cost 
function:

 C P a b P c P i Ni Gi i i Gi i Gi G( ) , , ,= + + =2 1   (2.1)

where NG is the number of units owned by the generation company. Let λn denote the 
NG × 1 vector of nominal (forecasted) LMPs; then, the expected (mean) profit is
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where PG is an NG × 1 vector containing the generation PGi and NG is the number of units 
owned by the generation company. The deterministic self-scheduling problem is a spe-
cific instance of a security-constrained optimal power flow model:
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The feasible region Π of the optimal power flow model is defined by the following set 
of constraints:

 i. Power generation limits:

 P P PGi Gi Gi
min maxʺ ʺ  (2.4a)

 ii. DC network model:
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(2.4b)

 iii. Intact network line flow constraints:

 − ≤ = − − ≤T T a Tij ij ij i j ij
max max( )δ δ  (2.4c)

 iv. Security constraints following the outage of lines m1k1 to mrkr in terms of flows in 
the intact network:
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where k(i) represents the set of nodes connected to node i, Pi the power injection at node 
i (= 0 or PGi), PGi

max the maximum limit of PGi, PGi
min  the minimum limit of PGi, PDi the 

forecasted power demand at node i, Tij the intact power flow on line ij, T ij
  the contingent 

power flow on line ij, Tij
max the prefault rating of line ij, T ij



max
 the postfault (emergency) 

rating of line ij, Vi the voltage magnitude at node i, yij the line admittance (g bij ij+ −1 ,
a VV bij i j ij= ), δi the voltage angle at node i (δ1 = 0), and σl the lth element of the row vec-
tor of load transfer coefficients (see Reference [14] for details).

The above-mentioned deterministic self-scheduling problem can be formulated as a 
second-order cone program:

Maximize
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(2.5a)

subject to

 w c P i Ni i Gi G= =for 1, ,  (2.5b)
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(2.5c)

 PG ∈Π  (2.5d)

The first relationship in Equation 2.5c is a rotated quadratic cone used to model 
Ci(PGi). The solution PG

*  to Equations 2.5a–d is referred to as the deterministic 
schedule.

It is obvious that the accuracy of forecasting the LMPs affects the accuracy of estimat-
ing the expected revenue as given by Equation 2.5a [15]. Because the accuracy of the 
forecast cannot be guaranteed, the actual LMPs can take random unexpected values, 
and the actual revenues may be well below the expected value in Equation 2.5a promised 
by the deterministic self-scheduling solution. Consequently, a method that balances risk 
and revenue is desired. Toward this end, Section 2.3 discusses how to quantify the risk 
by a monetary value.

2.2.1  Test System Model

The test system is the 5-bus network shown in Figure 2.1. It is small enough to allow 
documentation of the complete dataset, yet it is comprehensive to allow demonstration 
of the different aspects of the self-scheduling models. The generation, line, and bus data 
are given in Tables 2.1 through 2.3, respectively. They are based on the dataset originally 
appearing in Reference [16]. Both generators are assumed to be the property of the same 
generation company that is participating in a power pool market.
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South (2) Elm (5)

North (1) Lake (3) Main (4)

FIGURE 2.1 Benchmark 5-bus example.

TABLE 2.3 Bus Data of the 5-Bus Network

Bus i Type PDi (MW)

1 Slack 0
2 PV 20
3 PQ 45
4 PQ 40
5 PQ 60

TABLE 2.2 Line Data of the 5-Bus Network (100 MVA Base)

Bus i Bus j r (per unit) x (per unit) bsh/2 (per unit) Rating (per unit)

1 2 0.02 0.06 0.030 1.00
1 3 0.08 0.24 0.025 1.00
2 3 0.06 0.18 0.020 1.00
2 4 0.06 0.18 0.020 1.00
2 5 0.04 0.12 0.015 1.00
3 4 0.01 0.03 0.010 1.00
4 5 0.08 0.24 0.025 1.00
1 2 0.02 0.06 0.030 1.00

TABLE 2.1 Generator Data of the 5-Bus Network

Bus i PGi
min  (MW) PGi

max (MW) ai ($/h) bi ($/MWh) ci ($/MW2h)

1 10 200 0 3.4 0.004
2 10 200 0 2.4 0.003
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The nominal (forecasted) LMPs at buses 1 and 2 are assumed to be 4.5 and 3.4 $/
MWh, respectively:

 
λn =

⎡

⎣
⎢

⎤

⎦
⎥

4 5
3 4

.

.
 

It is also assumed that the actual spot-market price deviation from the forecast  market 
price follows the historical pattern of the price [17]. The corresponding price difference 
(actual LMP−forecasted LMP) distributions at buses 1 and 2 are given in Figure 2.2. 
In practice, the price difference distributions are obtained from historical values of the 
actual and forecasted LMPs. Each distribution has 168 data points. The corresponding 
discrete probability density distribution has a sample space given by the price difference 
values shifted by the nominal prices; that is, it would consist of the vectors λ1, λ2, …, λ168 
with probabilities:

 
Pr , ,λk k{ } = =

1
168 1 168for 

Appendix A2.2 includes the sample space so as to allow testing of the methods and 
reproduction of the results of this chapter in future research work. The covariance 
matrix, obtained for consistency from the price difference distributions using the cov(.) 
function in MATLAB• [18], is
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FIGURE 2.2 Price difference distributions.
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2.3  Measures of Risk

In return-risk trade-off analysis, the risk is quantified by a risk measure that maps the 
loss to a monetary value. This approach is widely adopted in practical applications and 
theoretical studies because it facilitates the understanding of risk. The foundations of 
the modern portfolio theory have been set in 1952 by Markowitz through the framework 
of mean variance analysis [9]. Two risk measures, among others, have appeared since 
then: VaR and CVaR.

2.3.1  Value-at-Risk

VaR is a risk assessment tool that is used by financial institutions to measure the mini-
mum occasional loss expected in a given portfolio within a stated time period [4,19]. In 
generation self-scheduling, VaR determines the monetary risk corresponding to a given 
generation schedule PG. For a given probability of occurrence, VaR estimates how much 
the power company could lose due to fluctuations in LMPs. The probability level β rep-
resents the degree of certainty of the VaR estimate. In other words, the probability that 
the monetary loss exceeds VaRβ is (1 − β) [5]:

 Pr{( ) }λ λ ββ
n T

GP− > = −VaR 1  (2.6)

This is illustrated in Figure 2.3 which shows a general probability density distribution 
of the profit function

 
f( ) ( )P , P C PG

T
G i

i

N

Gi

G

λ λ= −
=
∑

1  
(2.7)

where λ is an NG × 1 vector that follows the probability density distribution ρ(λ). The 
probability of the profit function f(PG,λ) not falling below a threshold t is therefore 
given by
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(2.8)

As a function of t and for a given value of PG, Ψ(PG,t) is the cumulative distribution 
function of the profit associated with PG· Ψ(PG,t) is in general nonincreasing with 
respect to t.

The robust profit (RPβ) is the lower 100(1 − β) percentile of the profit distribution. It 
is given by [10]:

 RPβ β( ) max : ( , )P t R P tG G= ∈ ≥{ }Ψ  (2.9)
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Equation 2.9 indicates that RPβ(PG) is the right endpoint of the nonempty interval 
consisting of the values of t such that Ψ(PG,t) = β. VaRβ is the difference between the 
expected profit (EP) and the RPβ:

 VaR EP RPβ β( ) ( ) ( )P P PG G G= −  
(2.10)

When the distribution ρ(λ) is Gaussian with given mean λn and covariance matrix 
Vλ, the VaRβ can be expressed as [5]:

 VaRβ λκ β( ) ( )P P V PG G
T

G=  (2.11)

where the safety parameter κ(β) is given by the standard normal tables, for instance, 
κ(0.95) = 1.65. Even if the distribution of returns cannot be assumed to be Gaussian, 
Tchebycheff’s inequality can be used to find an upper bound on the probability that the 
loss exceeds VaRβ:

 
Pr ( ) ( ) ( )λ λ κ β

κ βλ
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(2.12)

By comparing with Equation 2.6, κ β β( ) /= −1 1 . However, the classical Tchebycheff 
bound is not exact, meaning that the upper bound is not achieved [20]. It can be replaced 

Expected
profit
(EP)

CVaRβ

VaRβ

1 – β

Profit

Robust
profit
(RPβ)

Conditional
robust profit
(CRPβ)

β

FIGURE 2.3 Graphical representation of Value-at-Risk (VaRβ) and Conditional Value-at-Risk 
(CVaRβ) measures.
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by its exact version by simply setting κ β β β( ) /( ).= −1  Table 2.4 shows the values of 
κ(β) corresponding to different levels of the probability value.

2.3.2  Conditional Value-at-Risk

CVaR is an alternative risk assessment tool that gives a better indication of risk than 
VaR; it quantifies the losses associated with the tail of the profit distribution [21,22]. For 
the same confidence level used for VaR, CVaR is defined as the mean of the tail distribu-
tion exceeding VaR. Therefore, it provides an estimate of the average loss exceeding the 
VaR value. CVaRβ is defined graphically in Figure 2.3. The expected value of 100(1 − β) 
percentile of the lowest profit values is the conditional robust profit (CRPβ) [10]:
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(2.13)

In other words, CRPβ is the conditional expectation of the profit associated with PG 
given that the profit is RPβ or less. The corresponding CVaRβ is given by the EP minus 
the CRPβ in Equation 2.13:

 CVaR EP CRPβ β( ) ( ) ( )P P PG G G= −  
(2.14)

The CRPβ can be obtained by maximizing an auxiliary function without predeter-
mining the corresponding RPβ first, and, at the same time, RPβ is computed as a by-
product. The auxiliary function is [21,23]:
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(2.15)

where z− = min (0,z). By assuming that Ψ(PG,t) is everywhere continuous with respect to 
t, the relationships between RPβ(PG), CRPβ(PG), and Fβ(PG,t) are given as follows:
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t R
G∈ =

∈  
(2.16a)

 
CRP RPβ β β β( ) max ( , ) ( , ( ))P F P t F P PG t R G G G= =

∈  
(2.16b)

TABLE 2.4 Safety Parameter κ(β) for Selected Probability Values

β Gaussian Distribution Classical Tchebycheff Bound Exact Tchebycheff Bound

0.90 1.2816  3.1623 3.0000
0.95 1.6449  4.4721 4.3589
0.99 3.3263 10.000 9.9499
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In Equation 2.16a, if the interval Aβ(PG) does not reduce to a single point, then 
RPβ(PG) is the right endpoint of the nonempty interval Aβ(PG). The results in Equations 
2.16a and 2.16b are based on the theorems originally proposed by Rockafellar and 
Uryasev [21,23].

2.4  Data Uncertainty

Self-scheduling formulations that attempt to balance risk and reward are based on max-
imizing the robust profit [5] or conditional robust profit [10]. These approaches assume 
perfect knowledge of the data, in particular, the mean vector and covariance matrix of 
prices for VaR-based scheduling and the probability density function of prices for CVaR-
based scheduling. In reality, the data are often subject to error.

2.4.1  Data Uncertainty in VaR

VaR approaches are known to produce schedules that are extremely sensitive to errors in 
the mean vector and covariance matrix of prices. To deal with such errors within the 
scheduling framework, a model of the data uncertainty is required. One intuitive 
method to handle this uncertainty is to assume that λn and Vλ are only known within the 
interval bounds:

 λ λ λ− +≤ ≤n n n
 (2.17a)

 V V Vλ λ λ− +≤ ≤  (2.17b)

where λ−
n  and λ+

n  are given NG × 1 vectors, and Vλ− and Vλ+ are given NG × NG matrices. 
In the interval uncertainty model of Equation 2.17, the inequalities are understood 
component-wise.

2.4.2  Data Uncertainty in CVaR

In CVaR approaches, an analytical expression for ρ(λ) is not needed, rather a sampling 
procedure is used. The sample space of the discrete probability distribution consists of 
the vectors λ λ λ1 2, , , NC with probabilities

 Pr{ } , ,λ πk k Ck N= =0 1for   
(2.18a)
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In this case, the uncertainty is accounted for by requiring the vector of probability 
values π π π= [ , , ]1  N

T
C

 to lie in a given uncertainty set ℘π . Two uncertainty 
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 structures  are considered. The first is box uncertainty where it is assumed that π 
belongs to a box [24]:

 π π π π ε ε ε ε επ∈℘ = = + = ≤ ≤{ }B Te: , ,0 0  � �
 (2.19)

In the above set definition, π π π0
1
0 0= [ , , ] N

T
C

 is the nominal (most likely) probabil-
ity distribution, ε is an NC × 1 error vector, 



ε and 


ε are given (NC × 1) constant vec-
tors, and e is an NC × 1 vector of ones. The condition eTε = 0 ensures that the sum of 
probabilities remains 1. Moreover, the nonnegativity constraint on π is captured by 
the lower limit 



ε. The second uncertainty structure assumes that π belongs to an ellip-
soid [24]:

 
π π π π ν ν π ν νπ∈℘ = = + = + ≥ ≤{ }E TA e A A: , , ,0 0 0 1 0

 
(2.20)

where π0 is the nominal probability distribution at the center of the ellipsoid, A is the 
NC × NC scaling matrix of the ellipsoid, and ∙.∙ represents the Euclidean norm. The con-
straints eTAv = 0 and π0 + Av ≥ 0 ensure that π is a probability distribution.

Specifying the box and ellipsoidal structures requires knowledge of the nominal 
probability distribution together with a set of other possible distributions obtained from 
historical observations. In particular, it is assumed that the nominal distribution π0 and 
a set of possible distributions πi (i = 1, . . ., m) are available. Under this assumption, the 
bounds of the box uncertainty set can be specified as
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The scaling matrix for ellipsoidal uncertainty can be more easily specified by consid-
ering the special case of a ball uncertainty set. For ball uncertainty, the scaling matrix is 
given by αI, where I is the NC × NC identity matrix and the radius of the corresponding 
uncertainty ball is

 
α π π= −

∈{ }
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, ,i m
i

1
0

  
(2.22)

2.5  VaR Formulations

RPβ as given by Equation 2.10 is the EP minus the VaRβ. Therefore, the problem of 
maximizing RPβ is essentially a biobjective optimization problem in which equal 
weights are given to maximizing both EP and−VaRβ, or equivalently, maximizing 
EP and minimizing VaRβ. The solution to maximizing RPβ for a fixed β leads to a 
compromise between increasing EP and reducing VaRβ. The value of the parameter 
β, or alternatively the safety parameter κ(β), dictates the trade-off between risk and 
reward.



2-12 Electric Power Systems

2.5.1  VaR-Based Nominal Robust Schedule

To account for risk using VaRβ, the robust version of Equation 2.3 maximizes RPβ in 
place of the deterministic profit:

 
max ( ) ( ) ( )
P

n T
G i Gi

i

N

G
T

G
G

G

P C P P V P
∈

=

− −∑Π
 λ κ β λ

1  
(2.23)

The above problem is equivalent to the following second-order cone program [5]:
Maximize
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 PG ∈Π  (2.24f)

The conic constraints are given in Equations 2.24c and 2.24e; Equation 2.24c is a 
quadratic cone whereas the first relationship in Equation 2.24e is a rotated quadratic 
cone. The covariance matrix Vλ is in general symmetric positive (semi-)definite. 
Therefore, the NG × NG square matrix Dλ required in defining the quadratic cone of 
Equation 2.24c can be obtained using eigenvalue or spectral decomposition [6]:

 V Q QT
λ = Δ  (2.25)

where Q is a square orthogonal matrix of eigenvectors and Δ is a square diagonal matrix 
with eigenvalues of Vλ along its diagonal. It follows that

 D QT
λ = Δ1 2

 (2.26)

The solution PG
* to Equation 2.24 is referred to as the (VaR-based) nominal robust 

schedule. The term nominal refers here to the fact that data uncertainty is not accounted for.
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2.5.2  VaR-Based Worst-Case Robust Schedule

By considering the uncertainty in the mean vector and covariance matrix as described 
in Equation 2.17, the worst-case robust counterpart of Equation 2.24 corresponding 
to  the probability β can be derived by introducing additional variables [20]. Let Λ− 
and Λ+ denote unknown NG × NG matrices, PG− and PG+ denote unknown NG × 1 vec-
tors, and v an unknown real number. The worst-case robust problem involves 
optimization over linear constraints, conic quadratic, and semidefiniteness con-
straints [25]:

Maximize
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 PG ∈Π  (2.27g)

In Equation 2.27a, 〈A,B〉 = Tr(AB) denotes the inner product in the space of 
 symmetric matrices, and in Equation 2.27d, X � 0 means that the matrix X is sym-
metric positive semidefinite. As in Equation 2.24, the quadratic terms of Ci(PGi) 
are  modeled using a rotated quadratic cone in Equation 2.27f. The solution PG

* to 
Equation 2.27 is the (VaR-based) worst-case robust schedule. In the case that λn and Vλ 
are exactly known, that is, λ λ λ− += =n n n  and V V Vλ λ λ− += = , the above worst-case 
robust counterpart problem yields the same optimal solution as Equation 2.24. 
Problem 2.27 can be also used to compute the worst-case robust profit for a given 
schedule PG

n .
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2.5.3  Example of VaR-Based Robust Scheduling

Consider the 5-bus network whose data are specified in Section 2.1. The deterministic 
schedule obtained by solving Equation 2.5 is given (in MW) by
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This schedule does not consider possible fluctuations of the predicted LMPs; its 
 corresponding EP is 125.76 $/MWh. To account for this fluctuation, the covariance 
matrix of prices Vλ is used to give nominal robust schedules with different levels of risk 
aversion. This is achieved by solving the conic program in Equation 2.24 for three typi-
cal values of the probability level β: 0.90, 0.95, and 0.99. The corresponding value of κ(β) 
that is used in Equation 2.24 is obtained from the second column of Table 2.4, that is, by 
assuming that the profit distribution is approximately Gaussian. The nominal robust 
schedules (PG

n) are given in Table 2.5. Table 2.6 shows the values of EP, RPβ, and VaRβ for 
both the deterministic and nominal robust solutions. It is evident that the VaR-based 
schedule promises less profit but is however less risky. For the values of β considered in 
Tables 2.5 and 2.6, β = 0.90 corresponds to the most risky policy, while β = 0.99 corre-
sponds to the least risky one. When β = 0.95 is chosen as a compromise, there is 5% 
chance that the nominal robust schedule loss will exceed 53.42 $/MWh; this value is the 
95% VaR. For the deterministic schedule, the 95% VaR increases to 55.94 $/MWh. In all 
cases, the robust profit of the nominal robust schedule is higher than that of the deter-
ministic schedule.

The schedules in Table 2.5 assume that the data are error free. For β = 0.95, the nomi-
nal robust schedule is contrasted with the worst-case robust schedule obtained from 
Equation 2.27, in which the forecasted LMPs (i.e., elements of the mean vector) and the 
elements of the covariance matrix are assumed to belong to uncertainty intervals as in 
Equation 2.17. Let r be a parameter that denotes the relative uncertainty on λn, under-
stood in the sense of a component-wise, uniform variation. The uncertainty in the mean 
vector is described by the interval limits:

 λ λ λ− = −n n nr  (2.28a)

 λ λ λ+ = +n n nr  (2.28b)

TABLE 2.5 Value-at-Risk-Based Nominal Robust Schedules

Power Generation (MW) β = 0.90 β = 0.95 β = 0.99

PG1 67.87 66.15 63.63
PG2 97.13 98.85 101.37
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The mean vector is harder to estimate than the covariance matrix [20]. Therefore, the 
relative uncertainty on Vλ is assumed to be 10% that on λn:

 V V r Vλ λ λ− = − 0 1.  (2.29a)

 V V r Vλ λ λ+ = + 0 1.  (2.29b)

The worst-case robust profit can now be computed for increasing values of r for both 
the nominal robust schedule and the worst-case robust schedule. The worst-case robust 
profit corresponding to the worst-case robust schedule is computed from Equation 2.27. 
For the nominal robust schedule, Equation 2.27g is replaced by P PG G

n= . The results are 
depicted in Figure 2.4 where the x-axis is the relative uncertainty r and the y-axis is the 
worst-case RPβ as a percentage of the nominal RPβ (corresponding to r = 0). The results 
suggest that the worst-case robust schedule is superior to the nominal robust schedule in 

TABLE 2.6 Performance Parameters of the Deterministic and Value-at-Risk-Based Nominal 
Robust Schedules

Schedule Parameter ($/MWh) β = 0.90 β = 0.95 β = 0.99

Deterministic EP 125.76 125.76 125.76
RPβ 82.18 69.82 46.65

VaRβ 43.58 55.94 79.11
Nominal robust EP 125.06 124.80 124.34

RPβ 83.21 71.38 49.33
VaRβ 41.85 53.42 75.01

Note: EP, expected profit; RP, robust profit; VaR, Value-at-Risk.
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FIGURE 2.4 Normalized worst-case robust profit of the Value-at-Risk-based nominal and 
worst-case robust schedules (β = 0.95).
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the sense that it has a higher worst-case robust profit. For example, at an uncertainty 
level of r = 12%, the normalized worst-case robust profit of the nominal robust schedule 
drops to around −5%, whereas for the worst-case robust schedule it remains positive at 
around 10%.

2.6  CVaR Formulations

VaR approaches to risk management suffer from several shortcomings [10]. First, the 
VaR does not reveal the extent of losses that might be suffered beyond the amount quan-
tified by this measure. Second, VaR is in general not coherent, as in Reference [26], that 
is, the VaR associated with a combination of two generation schedules can be deemed 
greater than the sum of risks of the individual schedules. Third, VaR is very difficult to 
work with when computations are based on historical observations or scenarios [21]. For 
the same confidence level used for VaR, CVaR provides an estimate of the average loss 
exceeding the VaR value. CVaR is also a coherent measure of risk, as in Reference [26], 
and can be easily integrated with models based on historical observations or scenarios. 
In addition, because CVaR is greater than VaR, schedules with low CVaR will also have 
a low VaR.

2.6.1  CVaR-Based Nominal Robust Schedule

Accounting for risk through CVaRβ rather than VaRβ translates into an optimization 
problem that maximizes CRPβ instead of RPβ:

 
max ( )
P G

G
P

∈Π
CRPβ

 
(2.30)

Using Equation 2.16b, it can be shown that [21,23]:

 
max ( , ) max max ( , ) max ( ,

( , )P t R G P t R G P G
G G G

F P t F P t F P
∈ × ∈ ∈ ∈

= =
Π Π Π

β β β RPP CRPβ β( )) max ( )P PG P G
G

=
∈Π  

(2.31)

Equation 2.31 implies that the maximization of Fβ(PG,t) over (PG,t) ∈ Π × R produces 
a solution ( , )* *P tG  such that PG

* maximizes CRPβ. In the typical case where the interval 
A PGβ( )*  reduces to a single point, t* gives the corresponding RPβ. Otherwise, RPβ can be 
obtained using a line search [23].

To simplify the optimization problem in Equation 2.31, Fβ(PG,t) is commonly approx-
imated by sampling the probability distribution of λ according to its density function 
ρ(λ) [21,27]. Let the sampling generate the vectors λ λ λ1 2, , , NC

, then the corresponding 
approximation to Fβ(PG,t) in Equation 2.15 is
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The maximization of F P tGβ( , ) over Π × R, which gives an approximate solution 
of  the maximization of Fβ(PG,t) over Π × R, can be reduced to a second-order cone 
program [10]:

Maximize

 
t N u

C
k

k

NC

+
−

=
∑1

1
1

( )β
 

(2.33a)

subject to

 
u P a b P t p u k Nk k

T
G i i Gi

i

N

k C

G

≤ − + − − ≤ =
=
∑λ ( ) , , , ,

1

0 1for 

 
(2.33b)

 w c P i Ni i Gi G= =for 1, ,  (2.33c)

 
2 1

2 02

1

pq w q pi
i

NG

≥ = ≥
=
∑ , ,  

 
(2.33d)

 PG ∈Π  (2.33e)

The solution PG
* to Equation 2.33 is the (CVaR-based) nominal robust schedule.

2.6.2  CVaR-Based Worst-Case Robust Schedule

The robust self-scheduling model based on CVaR, as in Equation 2.33, assumes exact 
knowledge of the density function ρ(λ). This assumption may not be realistic, for 
instance, in cases where enough data samples are not available. To circumvent this prob-
lem, it is possible to relax this assumption by considering that the density function is 
only known to belong to a certain set ℘ of probability distributions:

 ρ(.) ∈℘  (2.34)

The worst-case CRPβ (WCCRPβ) for a given PG ∈ Π with respect to ℘ can be 
defined as

 
WCCRP CRPβ

ρ
β( ) inf ( )

(.)
P PG G=

∈℘  
(2.35)

The WCCRPβ as defined above remains a coherent measure of risk [24]. The robust 
self-scheduling problem in Equation 2.31 in terms of WCCRPβ becomes

 
inf max ( , )
(.) ( , )ρ

β
∈℘ ∈ ×P t R G

G
F P t

Π  
(2.36)
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Let ℘π  denote ℘ in the case of discrete probability distributions. Moreover, assume that 
℘π  is a compact convex set. Then the discrete version of Equation 2.36 reduces to [24]:

 
max min ( , , )

( , )P t R G
G

F P t
∈ × ∈℘Π π π

π

 
(2.37)

Problem 2.37 can be written in a form similar to Equation 2.33 [28]:
Maximize

 θ  (2.38a)

subject to

 
θ

β
π

π π
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2 1

2 02

1

pq w q pi
i

NG

≥ = ≥
=
∑ , ,

 
(2.38e)

 PG ∈Π  (2.38f)

However, the above problem cannot be yet optimized using conic programming 
due to the min operator in the constraint in Equation 2.38b. Conic program formula-
tions can be obtained in cases where ℘π is assumed to be a box or ellipsoidal uncer-
tainty set.

2.6.2.1  Box Uncertainty

Under the box uncertainty of Equation 2.19, it is possible to obtain the worst-case robust 
schedule from a quadratic cone program [24]. Let υ and ω denote additional unknown 
NC × 1 vectors and τ be an unknown real variable. The second-order cone program for 
worst-case robust scheduling is [28]:

Maximize

 
t uT T T+

−
−

−
−

1
1

1
1

0
β
π

β
ε υ ε ω( ) ( )� �

 
(2.39a)
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subject to

 − − + = ≥ ≥e uτ υ ω υ ω, ,0 0  (2.39b)
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 PG ∈Π  (2.39f)

The solution PG
* to the above problem is referred to as the (CVaR-based) worst-case 

robust schedule under box uncertainty. The formulation also allows computing the 
worst-case conditional robust profit for a prespecified generation schedule. In this case, 
Equation 2.39f is dropped from the constraint set.

2.6.2.2  Ellipsoidal Uncertainty

For the ellipsoidal uncertainty of Equation 2.20, the worst-case robust schedule can be 
also obtained from a second-order cone program [24,28]:

Maximize
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−
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−
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1

1
1
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 w c P i Ni i Gi G= =for 1, ,  (2.40e)
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(2.40f)

 PG ∈Π  (2.40g)

As in the case of box uncertainty, the program requires defining additional vari-
ables: υ and ω are unknown NC × 1 vectors, and τ and ζ are unknown real variables. 
The optimal generation schedule PG

*  to the above worst-case robust counterpart prob-
lem is referred to as the (CVaR-based) worst-case robust schedule under ellipsoidal 
uncertainty.

2.6.3  Example on CVaR-Based Robust Scheduling

The same system that was considered in the context of VaR-based scheduling is also 
studied with CVaR-based scheduling. The nominal robust schedules (PG

n), obtained 
from solving Equation 2.33 for three levels of β, are shown in Table 2.7. In this computa-
tion, there is no requirement to assume a Gaussian distribution for the profit as was done 
in the VaR-based schedules. Table 2.8 shows the corresponding values of EP, RPβ, CRPβ, 
VaRβ, and CVaRβ for both the deterministic and nominal robust solutions. The CVaR-
based solution reveals more information than the VaR-based solution. For instance, 
when β = 0.95, there is 5% chance that the profit of the nominal robust schedule drops 
below 69.32 $/MWh, and in such unfavourable cases the profit is on average 58.30 $/
MWh. The CVaRβ indicates the average loss exceeding VaRβ for the given probability of 
occurrence; in all cases, CVaRβ of the nominal robust schedule is less than that of the 
deterministic schedule.

The values in Tables 2.7 and 2.8 are valid provided that the actual probability distri-
bution of prices is perfectly described by the discrete uniform distribution in Section 2.1 
(also given in Table A2.2.1 Appendix A2.2). Because this assumption may not be entirely 
realistic, the worst-case robust schedule was calculated under box and ellipsoidal (ball) 
uncertainty structures and compared against the nominal robust schedule. The bounds 

TABLE 2.7 Conditional Value-at-Risk-Based Nominal Robust Schedules

Power Generation (MW) β = 0.90 β = 0.95 β = 0.99

PG1 67.23 62.81 64.16
PG2 97.77 102.19 96.23
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of the uncertainty structures were parameterized by a real number r ∈ [0,1]. For box 
uncertainty, the bounds can be described by the interval limits:

 
 

ε π ε π= − =r r0 0and  (2.41)

The scaling matrix for ball uncertainty is

 
A r

N I
C

=
 

(2.42)

Equations 2.41 and 2.42 show that the larger the value of r, the more uncertain the 
distribution. The parameter r can be chosen by the decision-maker to reflect the confi-
dence in the nominal probability distribution.

For increasing values of r, the worst-case CRPβ was computed for both the nominal 
robust and worst-case robust schedules. Under box uncertainty, the worst-case CRPβ 
corresponding to the worst-case robust schedule is calculated from Equation 2.39. 
For the nominal robust schedule, which is prespecified, the constraint in Equation 2.39f 
is replaced by P PG G

n= . The numerical results are illustrated in the lower two curves in 
Figure 2.5. The x-axis represents the parameter r, whereas the y-axis is the worst-case 
CRPβ as a percentage of the nominal CRPβ (corresponding to r = 0). Figure 2.5 suggests 
that the worst-case robust schedule is superior to the nominal robust one because it has 
a higher worst-case CRPβ. Figure 2.5 also includes similar curves obtained under ellip-
soidal uncertainty. In this case, the worst-case CRPβ is computed from Equation 2.40 
with P PG G

n=  for the nominal robust schedule and PG ∈ Π for  the  worst-case robust 
schedule. The normalized worst-case CRPβ values for ellipsoidal uncertainty are higher 
than their counterparts for box uncertainty, though they   follow the same trend. This 

TABLE 2.8 Performance Parameters of the Deterministic and Conditional Value-at-Risk-Based 
Nominal Robust Schedules

Schedule Parameter ($/MWh) β = 0.90 β = 0.95 β = 0.99

Deterministic EP 125.78 125.78 125.78
RPβ 80.84 67.52 48.85

CRPβ 65.83 56.68 43.25

VaRβ 44.94 58.26 76.93

CVaRβ 59.95 69.10 82.53
Nominal robust EP 124.64 123.70 122.20

RPβ 82.52 69.32 46.35

CRPβ 67.13 58.30 44.25

VaRβ 42.12 54.38 75.85
CVaRβ 57.51 65.40 77.95

Note: CRP, conditional robust profit; CVaR, Conditional Value-at-Risk; EP, expected profit; RP, robust 
profit; VaR, Value-at-Risk.
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result is expected because for the same value of r in Equations 2.41 and 2.42, the uncer-
tainty ball would be contained in the  uncertainty box.

2.7  Conclusions

This chapter presented specific optimization formulations for managing risk faced 
by  power producers bidding in pool-based electricity markets. The methods are 
 fundamentally based on the modern portfolio optimization theory and use two risk 
measures: VaR and CVaR. Uncertainty in the data is also addressed through optimizing 
the corresponding worst-case measures of risk. In all instances, convex problem formu-
lations are presented. These problems can be solved using semidefinite programming or 
a special form of it known as second-order cone programming. Numerical results are 
presented on a small-scale system whose dataset is completely specified. This would help 
in the progress of future research based on the current methods.

There are several directions for future research. The current formulations consider 
only a single time period and future work can consider risk-averted unit commitment 
methodologies. For worst-case scheduling, a reasonable specification of the uncertainty 
set is of paramount importance for practical self-scheduling. This requires further 
investigation. Another direction of research could consider the effect of price-taker 
assumption on the optimization formulations.

Appendix A2.1

Semidefinite programming (SDP) is an extension of linear programming (LP). In LP, 
the variables are elements of a vector that is required to be component-wise nonnega-
tive, whereas, in SDP, the variables form a symmetric matrix that is constrained to be 
positive semidefinite. Let A0 and Ai, i = 1,. . .,m, be given n × n symmetric matrices and 
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FIGURE 2.5 Normalized worst-case conditional robust profit of the Conditional Value-at-
Risk-based nominal and worst-case robust schedules (β = 0.95).
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b denote a given m × 1 vector. If X is an unknown n × n symmetric matrix, then the 
primal semidefinite programming problem is

Minimize

 A X0 ,  (A2.1.1a)

subject to

 A X b i mi i, , , ,= = 1  (A2.1.1b)

 X  � 0 (A2.1.1c)

The inner product is defined by

 
A X A Xij ij

i j
0 0,

,

= ∑
 

(A2.1.2)

and the notation X � 0  means that X is positive semidefinite. Polynomial time 
 interior-point methods for LP have been shown to be extendable to SDP [29].

A special form of SDP is second-order cone programming (SOCP). This generalizes 
an LP problem by including a constraint of the form x ∈ C in the problem definition 
where C is required to be a convex cone [13]. Let each element xi of the vector x be a 
member of exactly one of the vectors xj, j = 1,. . .,k. Condition x ∈ C is satisfied if each one 
of the vectors xj belongs to one of the following cones:

 i. The R set (set of real numbers).
 ii. The quadratic cone:
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 iii. The rotated quadratic cone:
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(A2.1.3b)

Conic quadratic problems can be solved by polynomial time interior-point methods 
at basically the same computational complexity as linear programming problems of 
similar size [13].
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Because SOCP is a special case of SDP, it is possible to define convex optimization 
problems that include constraints of the type x ∈ C and X � 0. The solutions to all the 
optimization programs in this chapter were obtained using the SeDuMi solver [30] 
under the Matlab [18] environment.

Appendix A2.2

TABLE A2.2.1 Sample Space of the Discrete Probability Distribution of Locational Marginal 
Prices (5-Bus Example)

k λ1 λ2 k λ1 λ2 k λ1 λ2 k λ1 λ2

 1 5.2336 3.4313 43 4.6246 3.2194 85 4.7948 3.6952 127 4.6362 3.3397
 2 5.1754 3.3269 44 4.7232 3.5152 86 4.1516 2.8598 128 4.7056 3.4087
 3 4.6084 3.4444 45 4.8130 3.3872 87 5.2833 3.3241 129 4.2909 3.3594
 4 4.4587 3.2507 46 4.2922 3.4999 88 4.6366 3.3131 130 4.7495 3.4110
 5 4.7912 3.3922 47 4.8643 3.3724 89 5.0421 3.5365 131 5.0289 3.5469
 6 5.1339 3.3693 48 5.0301 3.0689 90 4.4212 3.2843 132 4.4769 3.4825
 7 4.9245 3.3764 49 4.0500 3.7202 91 4.4812 3.1997 133 4.9105 3.3079
 8 4.7471 3.1314 50 4.4570 3.0889 92 4.5133 3.6108 134 4.3376 3.6980
 9 4.5193 3.4262 51 4.5896 3.5139 93 4.8968 3.3388 135 4.8958 3.9844
10 4.7337 3.3654 52 4.0924 3.5351 94 4.7557 3.4585 136 4.1553 3.2491
11 3.786 3.0474 53 5.0024 3.0512 95 5.0118 3.6060 137 4.2457 3.3992
12 4.2004 3.2557 54 4.8420 3.5037 96 4.6794 3.4563 138 3.8151 3.4960
13 3.966 3.7576 55 4.2243 3.5388 97 4.2132 2.9879 139 4.3596 3.6058
14 4.5323 3.3857 56 4.6617 3.1638 98 4.5779 3.2815 140 4.4783 3.2838
15 4.5904 3.5125 57 4.4414 2.9181 99 4.5781 3.6089 141 4.7717 3.4617
16 4.8808 3.5445 58 5.0383 3.4798 100 5.2484 3.2801 142 5.0498 3.1873
17 4.5895 3.4668 59 3.2712 3.6185 101 4.5838 3.2868 143 4.1604 3.4594
18 4.1233 3.5586 60 4.3299 3.4284 102 4.4951 3.5971 144 4.5623 3.5869
19 5.0925 3.4615 61 4.8296 3.7334 103 4.5331 3.3006 145 4.9073 3.8810
20 4.1818 3.1363 62 4.5530 3.6576 104 4.5288 3.0719 146 4.4972 3.2488
21 4.9071 3.5679 63 4.3851 3.5515 105 4.1076 3.5124 147 4.3152 3.6456
22 3.9075 3.2896 64 4.4790 3.6711 106 4.5856 3.6609 148 4.4805 3.5960
23 4.0906 3.8651 65 4.005 3.1675 107 4.6166 2.9259 149 4.7160 3.6293
24 4.6828 3.3800 66 4.5923 3.4953 108 4.7324 3.1751 150 3.7562 3.9414
25 4.1296 3.4175 67 4.8763 3.5199 109 5.0674 3.7204 151 4.8956 3.7964
26 4.5274 3.5845 68 4.9761 3.0838 110 4.6417 3.1722 152 4.5970 3.0445
27 3.985 3.6082 69 4.7134 3.4523 111 4.8715 3.3897 153 4.3552 3.1338
28 4.0836 3.5511 70 4.1606 3.0732 112 4.5855 3.3266 154 4.8622 3.3869
29 5.1871 3.3482 71 4.3060 3.1868 113 4.5047 3.8376 155 4.6976 3.4080
30 4.6149 2.9322 72 4.6128 3.0882 114 4.6353 3.2645 156 4.2014 3.2759
31 5.2518 3.2956 73 4.7809 3.4068 115 3.9153 3.8193 157 4.3597 3.6059
32 4.6424 3.1285 74 4.2658 3.3140 116 4.5178 3.3914 158 4.6345 3.6844
33 4.4999 3.3492 75 4.105 3.2375 117 4.0634 3.3120 159 4.4919 3.4106
34 4.1004 2.8745 76 3.7430 3.6413 118 4.2978 3.1357 160 4.1768 3.2398



2-25Uncertainty and Risk in Generation Scheduling

References

 1. A. J. Conejo, F. J. Nogales, J. M. Arroyo, and R. García-Bertrand, Risk-constrained 
self-scheduling of a thermal power producer, IEEE Transactions on Power Systems, 
19(3), 1569–1574, 2004.

 2. A. J. Conejo, F. J. Nogales, and J. M. Arroyo, Price-taker bidding strategy under price 
uncertainty, IEEE Transactions on Power Systems, 17(4), 1081–1088, 2002.

 3. H. Yamin, S. Al-Agtash, and M. Shahidehpour, Security-constrained optimal gen-
eration scheduling for GENCOs, IEEE Transactions on Power Systems, 19(3), 1365–
1372, 2004.

 4. M. Denton, A. Palmer, R. Masiello, and P. Skantze, Managing market risk in energy, 
IEEE Transactions on Power Systems, 18(2), 494–502, 2003.

 5. R. A. Jabr, Self-scheduling under ellipsoidal price uncertainty: Conic-optimisation 
approach, IET Generation, Transmission & Distribution, 1(1), 23–29, 2007.

 6. J. P. Morgan: RiskMetricsTM—Technical Document, 4th ed. New York: J. P. Morgan, 
1996.

 7. H. Y. Yamin and S. M. Shahidehpour, Risk and profit in self-scheduling for GenCos, 
IEEE Transactions on Power Systems, 19(4), 2104–2106, 2004.

 8. R. Bjorgan, C.-C. Liu, and J. Lawarrée, Financial risk management in a competitive 
electricity market, IEEE Transactions on Power Systems, 14(4), 1285–1291, 1999.

 9. H. Markowitz, Portfolio selection, The Journal of Finance, 7(1), 77–91, 1952.
 10. R. A. Jabr, Robust self-scheduling under price uncertainty using conditional value-

at-risk, IEEE Transactions on Power Systems, 20(4), 1852–1858, 2005.
 11. P. Attaviriyanupap, H. Kita, E. Tanaka, and J. Hasegawa, A fuzzy-optimization 

approach to dynamic economic dispatch considering uncertainties, IEEE Transactions 
on Power Systems, 19(3), 1299–1307, 2004.

 12. H. Y. Yamin, Fuzzy self-scheduling for GenCos, IEEE Transactions on Power Systems, 
20(1), 503–505, 2005.

 13. E. D. Andersen, C. Roos, and T. Terlaky, On implementing a primal-dual interior-
point method for conic quadratic optimization, Optimization Online, 2000 [Online]. 
Available: http://www.optimization-online.org/DB_HTML/2000/12/245.html

TABLE A2.2.1 (continued) Sample Space of the Discrete Probability Distribution of 
Locational Marginal Prices (5-Bus Example)

k λ1 λ2 k λ1 λ2 k λ1 λ2 k λ1 λ2

35 4.6571 2.8429 77 4.3315 3.4316 119 4.1503 3.2512 161 4.9604 3.0451
36 4.0459 3.0641 78 4.2783 3.4687 120 4.1619 3.0224 162 4.4229 3.3805
37 4.0178 3.1390 79 4.1364 3.2818 121 4.7037 3.9519 163 4.3322 3.2570
38 4.6856 3.0574 80 4.4917 3.1123 122 4.7736 2.9756 164 4.1348 3.3023
39 4.5319 3.0518 81 4.9496 3.3989 123 4.2640 3.3355 165 3.8859 3.3396
40 4.2723 3.6589 82 4.4454 3.4604 124 4.1039 3.5643 166 5.1564 3.1470
41 4.0337 3.7290 83 4.5053 3.2974 125 4.8906 3.3596 167 4.9275 3.4700
42 4.3802 3.2996 84 3.9588 3.2792 126 4.2007 3.3977 168 4.4271 3.5445

http://www.optimization-online.org


2-26 Electric Power Systems

 14. R. A. Jabr, Homogeneous cutting-plane method to solve the security-constrained 
economic dispatching problem, IEE Proceedings C—Generation, Transmission & 
Distribution, 149(2), 139–144, 2002.

 15. J. Bastian, J. Zhu, V. Banunarayanan, and R. Mukerji, Forecasting energy prices in 
a competitive market, IEEE Computer Applications in Power, 12(3), 40–45, 1999.

 16. E. Acha, C. R. Fuerte-Esquivel, H. Ambriz-Pérez, and C. Angeles-Camacho, 
FACTS: Modeling and Simulation in Power Networks. Chichester: John Wiley & 
Sons, 2004.

 17. M. Shahidehpour, H. Yamin, and Z. Li, Market Operations in Electric Power Systems: 
Forecasting, Scheduling, and Risk Management. New York: John Wiley & Sons, 2002.

 18. MATLAB (Release 2006b), The Math Works, Inc., 3 Apple Hill Drive, Natick, MA 
01760-2098 [Online]. Available: http://www.mathworks.com

 19. K.-H. Ng and G. B. Sheblé, Exploring risk management tools, Proceedings of the 
IEEE/IAFE/INFORMS 2000 Conference on Computational Intelligence for Financial 
Engineering, pp. 65–68, 2000.

 20. L. El Ghaoui, M. Oks, and F. Oustry, Worst-case value-at-risk and robust portfo-
lio optimization: A conic programming approach, Operations Research, 51(4), 
543–556, 2003.

 21. R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk, Journal 
of Risk, 2, 21–41, 2000.

 22. R. T. Rockafellar and S. Uryasev, Conditional value-at-risk for general loss distri-
butions, Research Report No. 2001-5, ISE Department, University of Florida, 
2001.

 23. R. T. Rockafellar and S. Uryasev, Optimization of conditional value-at-risk, Research 
Report No. 99-4, ISE Department, University of Florida, 1999.

 24. S. Zhu and M. Fukushima, Worst-case conditional value-at-risk with application to 
robust portfolio management, Operations Research, 57(5), 1155–1168, 2009.

 25. R. A. Jabr, Worst-case robust profit in generation self-scheduling, IEEE Transactions 
on Power Systems, 24(1), 492–493, 2009.

 26. P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath, Coherent measures of risk, 
Mathematical Finance, 9(3), 203–228, 1999.

 27. F. Andersson, H. Mausser, D. Rosen, and S. Uryasev, Credit risk optimization 
with conditional value-at-risk criterion, Mathematical Programming, Series B, 89, 
273–291, 2001.

 28. R. A. Jabr, Generation self-scheduling with partial information on the probability 
distribution of prices, IET Generation, Transmission & Distribution, 4(2), 138–149, 
2009.

 29. D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming, 3rd ed. New York: 
Springer, 2008.

 30. J. F. Sturm, Using SeDuMi 1.02, a Matlab toolbox for optimization over symmetric 
cones, Optimization Methods & Software, 11–12, 625–653, 1999.

http://www.mathworks.com


3-1

3.1  Introduction

Operational decisions in power systems, such as unit commitment, economic dispatch, 
automatic generation control, security assessment, maintenance scheduling, and energy 
commercialization, depend on the future behavior of loads. Therefore, several short-
term load forecasting (STLF) methods, for which the load is sampled on an hourly (or 
half-hourly) basis, or even daily basis (peak load), have been proposed during the last 
four decades. Such a long experience in dealing with the load forecasting problem has 
revealed some useful models such as the ones based on multilinear regression [1], Box–
Jenkins method [2], artificial neural networks (ANNs) [3], fuzzy systems [4], and hybrid 
models [5].

After the restructuring of the electric power industry, one of the major difficulties in 
applying nonautomatic methods is scalability. Aggregated load forecasts, well  performed 
by parametric models, are used to provide sufficient information for operational plan-
ning purposes. However, deregulated energy markets have presented new challenges to 
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decision-making, which requires more information dependent on accurate bus load 
forecasting. Therefore, the corresponding development and maintenance efforts for 
dealing with hundreds of irregular bus load series, which need to be simultaneously 
forecast for security and economical analyses, are beyond practical consideration for 
tailormade parametric models. Autonomous load forecasters are needed to avoid expert 
intervention and to extend the application to the bus load level.

Furthermore, the relationship between electric load and its exogenous factors is 
 complex and nonlinear, making it quite difficult to be modeled through conventional 
techniques such as linear time-series and regression analyses. Classical methods are 
bias-prone, that is, they are based on theoretical guesses about the underlying laws 
 governing the system under study. On the other hand, after some years of practical expe-
rience, it has been recognized that ANNs can provide superior forecasting performance 
when dealing with nonlinear and multivariate problems involving large datasets, such 
as short-term load prediction. ANNs have more flexible functional forms in which there 
are few a priori assumptions about the relationships between input and output 
variables.

Although usually more robust than traditional load forecasting models, ANNs have 
overcome several problems in order to become commercially successful [6]. Since the 
first proposals of ANN-based load forecasters, five major drawbacks have been tackled: 
heavy training burden, lack of prediction interval estimation, inference opacity, input 
space representation, and model complexity control. Fast training algorithms have been 
developed since the early 1990s [7], which have allowed the tracking of load nonstation-
arities. On the other hand, some time has passed until the recognition of the practical 
importance of prediction interval estimation [8]. Qualitative interpretations of the 
ANN’s forecasts have been proposed by Iizaka et al. [9]. It seems that improvement on 
forecasting accuracy provided by ANNs cannot come without degrading model trans-
parency. Therefore, with ANNs it is hard to achieve a level of interpretability comparable 
to the one extractable from linear models.

The last two drawbacks are critical for STLF. The ANN input representation and com-
plexity control shall not be treated separately. The extent of nonlinearity required from 
an ANN is strongly dependent on the selected input variables. One of the advantages of 
neural network models is the universal approximation capability, that is, unlimited pre-
cision for continuous mapping. However, this theoretical advantage can backfire if data 
overfitting is not avoided. The main objective of model complexity control is to match 
the data regularity with the model structure, maximizing the generalization capacity.

A popular procedure for ANN complexity control is based on cross-validation with 
training early stopping, that is, the iterative updating of the connection weights until the 
error for the validation subset stops decreasing. This procedure is very heuristic because 
it is not easy to detect the right iteration for interrupting the training process. Besides, 
although cross-validation has been successfully applied to the design of neural classifi-
ers, serial interdependence information can be lost when it is used in time-series 
forecasting.

This chapter aims to explain all phases involved in the development of an ANN-based 
STLF system. Section 3.2 deals with data preprocessing. A certain regularity of the data 
is an important precondition for the successful application of ANNs. In order to tackle 
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the problem of nonstationarity, wavelets have been utilized because they can produce a 
useful local representation of the signal in both time and frequency domains [10]. 
Moreover, the wavelet decomposition can be used to unfold inner load characteristics, 
which are helpful for a more precise forecasting.

Section 3.3 describes the first stage of an input variable selection process. Input space 
representation is probably the most important subtask in load forecasting. It has been 
shown that input variable selection based on linear auto- and cross-correlation analyses 
is not appropriate for nonlinear models such as ANNs [11]. ANN-oriented input selec-
tion schemes are explained in Sections 3.3 and 3.4. They are able to capture important 
information about the linear and nonlinear interdependencies in the associated multi-
variate data. Section 3.4 presents the second stage of the recommended input selection 
process. It determines, through Bayesian training, useful explanatory input variables 
from the preselected set [12]. This ANN training technique uses Bayesian inference to 
minimize the out-of-sample prediction error without cross-validation. The training 
method includes complexity control terms in its objective function, which allow autono-
mous modeling and adaptation.

In Section 3.5, the Bayesian training algorithm is extended to include structure iden-
tification in the automatic ANN design. Nevertheless, one should not produce a forecast 
of any kind without an idea of its reliability. Point predictions are meaningless when the 
time series is noisy. However, there are many difficulties in computing those indices for 
nonlinear models. Prediction intervals should be as narrow as possible, while encom-
passing a number of true values according to its reliability. Section 3.6 shows a technique 
for the estimation of prediction intervals for ANN-based short-term load forecasters. 
Finally, Section 3.7 concludes the chapter with suggestions for future work.

3.2  Data Preprocessing

STLF can be enhanced by data preprocessing. This section is divided into two parts. The 
first is related to standardization and differencing. The second describes multiresolution 
representation through wavelet transform.

3.2.1  Standardization and Differencing

The basic motivation for normalizing input and output variables is to make them com-
parable for the training process. Standardization, that is, to transform a random vari-
able such that its mean and variance become zero and one, respectively, usually helps to 
improve the training efficiency and the ANN mapping interpretability as well. Although 
ANNs have no strict hypothesis regarding the time-series stationarity, differencing can 
also help during ANN learning.

First-order differencing can be used to compute the differences between adjacent 
 values of a time series. A linear trend in a load series can be removed by first-order 
 differencing. Seasonal differencing also helps to improve stationarity. With seasonal 
 differencing, the original series is subtracted by lagged values that correspond to the 
seasonal component to be attenuated (e.g., subtraction by the load value at the same time 
in the previous day). A load series usually presents daily, weekly, and yearly cyclic 
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 components, which can be mitigated with seasonal differencing. However, experience 
shows that ANNs prefer to model the seasonalities by themselves. Therefore, seasonal 
differencing has not been used.

3.2.2  Wavelet Filtering

The objective of wavelet filtering is to identify different sources of useful information 
embedded in a load time series. Electric load series are formed by the aggregation of 
individual consumers of different natures. A good piece of the information provided by 
a load series is useful for forecasting. The rest is related to a random component that 
cannot be predicted. Therefore, there are two main reasons for filtering a load time 
series. First, important regular behavior of the load series can be emphasized. Second, a 
partition into different components of the load series can be produced, decreasing the 
learning effort.

The multiresolution decomposition, through discrete wavelet transform and its 
inverse, splits up the load series into one low-frequency and some high-frequency com-
ponents (see Appendix A3.1). Using this new representation of the original load signal, 
two different alternatives have been developed. The first one consists of creating a mul-
tilayer perceptron (MLP) model for STLF whose inputs are based on information from 
the original load sequence and from the subseries (components) produced by multireso-
lution decomposition, that is, the approximation (A) and detail (D) levels, as in Figure 3.1. 
The second alternative predicts the load’s future behavior by independently forecasting 
each subseries through MLPs. The final forecast is obtained by combining the predic-
tions for each subseries (Figure 3.2).

Before extracting the smoothed version of the load series (approximation level) and 
the detail levels (higher frequency bands), two choices must be made: selection of the 
mother wavelet and definition of the number of levels for decomposition. There are 

Standardized
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Differencing

Wavelets

MLP-based forecaster

Standardized
temperature

FIGURE 3.1 Combined inputs alternative.
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many types of mother wavelets that can be used in practice. To choose the most suitable 
one, the attributes of the mother wavelet and the characteristics of the load series must 
be taken into account. Different wavelet families have been considered in the study by 
Reis and Alves da Silva [13]. This study shows that the Daubechies wavelet of order 2 is 
the most appropriate for treating load series.

It is also advisable to select a suitable number of decomposition levels based on the load 
series’ dynamics. It has been concluded that the three-level decomposition is the most 
promising choice, because it has described the load dynamics in a more meaningful way 
than others. This conclusion is not based only on the approximation level, which is the 
most significant part of a load signal. Note that intraday seasonalities become evident 
from d2 and d3 in Figure 3.3. The three-level decomposition emphasizes the regular 
behavior of the load series. It reveals hidden patterns that are not clear in the original 
series. On the other hand, the highest frequency band concentrates the load’s random 
component (d1).

In fact, the load approximation and details presented in Figure 3.3 have been pro-
duced by the so-called stationary wavelet transform, which is similar to the discrete 
wavelet transform, but preserves the original sampling rate for all subseries. This is 
achieved by never downsampling at each level of decomposition. The stationary wavelet 
transform is an inherently redundant scheme because a half-range of input frequencies 
needs only a half-sampling rate. However, it simplifies input selection, considering that 
each subseries contains the same number of points as the original load series. There are 
many useful software tools for multiresolution decomposition, as shown, for example, in 
the study by Misiti et al. [14].

There is an important issue for successful application of those procedures. Border 
distortions arise when one performs filtering of finite-length time series. Therefore, 
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FIGURE 3.2 Combined models alternative.
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multilevel load decomposition through wavelets corrupts the information at both sides 
of each subseries. Distortion on the left side (i.e., the oldest information is corrupted) 
degrades the forecast estimation. Corruption of the most recent load information on the 
right side affects both model estimation and forecasting. In order to deal with this prob-
lem, signal extension (known as padding) at the borders of the original load series is 
applied. The goal is to minimize the amount of distortion on both edges of the 
subseries.

Reis and Alves da Silva [13] propose a padding strategy that appends the previous 
load values at the beginning of the series to be used for model estimation and “naively” 
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predicted values at the end of it. By using the proposed padding, one can expect no 
distortion at the beginning of the decomposed signals and a reduced amount of distor-
tion at their ends. Another important question is related to the length of the attached 
information. Empirically, it has been found that the use of 72 padding values (at least) 
in each extremity of the load series is enough to reduce distortions.

3.3  Input Preselection

The first stage for input variable selection analyzes input relevance using statistical tests. 
The second stage evaluates the usefulness of the previously selected input set using the 
ANN training algorithm described in Section 3.4. Because of the feedforward structure 
and supervised learning of the neural networks of interest, input selection in this chap-
ter is limited to determining significant delays in the time series and important dummy 
variables. The first stage of the input selection process (preselection) does not take into 
account the neural network structure and training algorithm. The method is based on a 
normalized mutual information measure.

Mutual information has been used for selecting inputs to neural networks [15]. The 
underlying motivation for its application is the capacity for detecting high-order statisti-
cal relationships among variables. In this chapter, instead of advocating the application 
of mutual information as in the study by Batitti [15], a normalized mutual information 
measure, called interdependence redundancy [16], estimated on subsets of interdepen-
dent outcomes, is used for preselecting input variables. Interdependence redundancy is 
capable of screening out statistically irrelevant information, making the detection of 
linear and nonlinear relationships more robust [17]. In previous works, interdependence 
redundancy has been used as the basis of statistical procedures for estimating missing 
values. Following the study by Alves da Silva et al. [18], this measure of information is 
recommended as a tool for preselecting inputs to ANNs. Interdependence redundancy 
provides two advantages for this particular purpose in comparison with the mutual 
information measure suggested by Batitti [15]. First, interdependence redundancy is 
bounded, with values between zero (independent) and one (strictly interdependent). 
Second, as interdependence redundancy is estimated considering different subspaces, it 
is a more reliable way of evaluating nonlinear interactions among variables.

The rest of this section describes the method for estimating the interdependence redun-
dancy between pairs of random variables. Initially, the load series has its long-term trend 
removed by linearly detrending the entire extent of the series, to allow a better analysis of 
the relationship between endogenous and exogenous variables. Then, standardization has 
been applied to the detrended load series and to the exogenous variables.

Let x x x x x xm M1 1 2 2= ( , , , ), , ,   be an ensemble of M multiple observations of 
the  initial set of input variables (e.g., load, temperature and price lags, temperature 
 forecast, etc.) and corresponding output variables (i.e., load at the forecasting horizon) 
X1, X2, …, Xm, where x1, x2, …, xm represent the corresponding outcomes. Furthermore, 
Tj = {ajr|r = 1, 2, …, Lj} represents the set of Lj discretized (with equal frequency intervals) 
outcomes of Xj (j = 1, 2, …, m). Then, a multiple observation is described by simultaneous 
realizations xj (j = 1, 2, …, m), where xj assumes a specific value from Tj.
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Initially, the outcomes of the pairs of variables, that is, output against endogenous, 
output against exogenous, endogenous against endogenous, endogenous against exoge-
nous, and exogenous against exogenous, are divided into two subsets. The first subset 
contains events that have interdependence for inference. The second subset contains 
events that cannot be used for inference. The following procedure is applied to separate 
the subsets.

Step 1: Estimate the expected frequency of all joint outcomes of Xk and Xj, (aks, ajr), 
from the marginal frequency of each outcome in the ensemble, that is, obs(aks) and 
obs(ajr), respectively. If independence of variables is assumed, then

 exp( , ) [ ( ) ( )]a a a a Mks jr ks jr= obs obs /  (3.1)

Step 2: Obtain the observed frequencies of the joint outcomes (aks, ajr). Calculate the 
degree to which an observed frequency deviates from the expected frequency under the 
independence hypothesis:
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Step 3: Test the statistical interdependency between aks and Xj, for k ≠ j, at a presumed 
significance level. As Dk

j  has an asymptotic χ2 distribution with Lj − 1 degrees of freedom, 
statistical interdependency between aks and Xj can be determined by the following test:
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where χ α( , )Lj −1
2  is the tabulated χ2 value with significance level α.

Step 4: Build, for all pairs of variables (Xk, Xj), two subsets of interdependent 
outcomes:
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and
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Next, the statistical interdependency between the restricted variables, X j
k and Xk

j , 
with outcomes in the subspace spanned by E Ej

k
k
j× , is estimated.

Step 5: Obtain the interdependence redundancy between X j
k and Xk

j  as follows:
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where I X Xj
k

k
j( , ) is the expected mutual information between X j

k and Xk
j ,  and H X Xj

k
k
j( , )

is Shannon’s entropy function, given by
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The statistical interdependencies between variables can be determined by a χ2 test, 
with ( )( )| | | |E Ej

k
k
j− 1 1−  degrees of freedom, on the scaled interdependence redundancy 
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the number of joint observations of the restricted variables ( , ).X Xj
k

k
j  Interdependence 

redundancy is used not only for detecting a strong interaction between a possible input 
and the output variable. It is also used to eliminate redundant input variables. Experience 
has shown that Lj = 20 is a reasonable choice for discretizing the m standardized 
variables.

3.4  Refining Input Selection for ANNs

Neural network models commonly used in load forecasting are of the MLP type, with 
one hidden layer only. To introduce the adopted nomenclature, this section describes the 
general structure of an MLP with one hidden layer and one output neuron, under super-
vised learning.

Let x n∈ℜ  be a vector representing input signals and w M∈ℜ  the vector with the 
ANN connection weights, where M = mn + 2m + 1 and m is the number of neurons in 
the hidden layer. The biases of the sigmoidal activation functions of the hidden neurons 
are represented by bk, k = 1, 2, . . ., m, where b stands for the bias of the output neuron 
 linear activation function. The final mapping is

 
y f x w w c bk k
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(3.9)

where c w x bk i
n

ik i k= ∑ +( )=ϕ 1( ) .
Given a dataset U with N input/output pairs, U = {X,D}, for X x x xN= ( , , , )1 2   and 

D = (d1, d2, . . ., dN), where dj ∈ℜ  represents the desired outputs, the MLP training objec-
tive usually is the estimation of the weight vector w such that the empirical risk (training 
error) is minimized:
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There are several algorithms for minimizing Equation 3.10. Independent of using the 
classical error back-propagation, or any other training method, the main drawback of 
this unconstrained training criterion is the absence of any concern regarding model 
complexity. A robust approach for controlling the MLP complexity is based on regular-
ization theory, in which analytical methods adjust its extent of nonlinearity without 
necessarily changing the model structure.

3.4.1  Regularization Methods

A balance between training error and generalization capacity can be obtained through 
the minimization of the total risk:

 
min ,

w s cR w E w U E w( ) = ( ) + ( ){ }λ
 

(3.11)

In Equation 3.11, E w Us( , )  denotes the empirical risk, given by Equation 3.10, whereas 
E wc( ) estimates the model complexity. The factor λ is known as the regularization 
parameter, which weighs the bias-variance trade-off, that is, training error versus model 
complexity. The regularization parameter λ can be estimated by the MLP training pro-
cedure described in the next section.

3.4.2  Bayesian MLP Training

One way to define the functional form of λE wc( ), in Equation 3.11, is through the appli-
cation of Bayesian inference [19]. Using Bayes’ rule, the conditional probability density 
function (PDF) of w, given a dataset U, p w D X( , ), is estimated by
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p D X
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(3.12)

As X is conditioning all probabilities in Equation 3.12, it will be omitted from this 
point on. Therefore, in Equation 3.12, p D w( )|  is the likelihood of D given w, p w( ) is w’s 

a priori PDF, and p D p D w p w w( ) ( ) ( )= ∫ d  is enforcing p w D w( ) d =∫ 1 .

It is initially assumed that w presents a Gaussian distribution with zero mean and 
diagonal covariance matrix equal to α−1I , where I  is the M × M identity matrix:
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The desired outputs can be represented by d f x wj j j= +( , ) ζ , where ζ is Gaussian 
white noise with zero mean and variance equal to β−1. The regularization factors α and β 
(learning parameters, also called hyperparameters), in contrast to other regularization 
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techniques, are estimated along with the model parameter w. Considering the previous 
hypotheses and assuming that the dataset patterns are independent, then
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Consequently, based on Equation 3.12,
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Therefore, the maximization of the a posteriori distribution of w, p w D( )| , is equivalent 
to the minimization of S w( ). Dividing S w( ) by β and making λ = α/β in Equation 3.11, 
the equivalence between S w( ) and R w( ) can be verified if

 
E w wc( ) = 1

2
2

 
(3.17)

The regularization term in Equation 3.17, known as weight decay, favors neural mod-
els with small magnitudes for the connection weights. Small values for the connection 
weights tend to propagate the input signals through the almost linear segment of the 
sigmoidal activation functions. Note that the requirement of prior information in 
Bayesian training is the primary instrument for controlling the MLP complexity.

One of the advantages of Bayesian training of an MLP is the embedded iterative 
mechanism for estimating λ, that is, α and β, which avoids cross-validation. For multi-
variate problems such as load forecasting, the use of one single hyperparameter α for 
dealing with all connection weights is not recommended. Load- and weather-related 
input variables, such as temperature, require different priors. Even among the same type 
of variables, different levels of interdependence are involved [e.g., P(k) against P(k + 1) 
and P(k – 23) against P(k + 1), for an hourly basis load].

In the following section, each group of connection weights directly related to an input 
variable receives a different αi. The same idea is applied to the groups of weights associ-
ated with the biases (one αi for the connections with the hidden neurons and another for 
the output neuron connection). One last αi is associated with all connection weights 
between the hidden and output layers. Therefore, for n-dimensional input vectors x , the 
total number of αis is n + 3.
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3.4.3  Input Selection by Bayesian Training

For a given model structure, the magnitudes of the αis can be compared to determine the 
relevance of the corresponding input variables. As p wi( ) is supposed to be normally dis-
tributed with zero mean and αi I−1  covariance, then, the largest αis lead to the smallest wis. 
For estimating the a posteriori PDF of w, Bayesian training combines the a priori PDF with 
the information provided by the training set (Equation 3.12). If an αi is large, the prior 
information about wi is almost certain, and the effect of the training data on the estimation 
of wi is negligible. Another way to see the influence of αi on wi is through Equation 3.16.

The impact on the output caused by input variables with very small wis, that is, very 
large αis, is not significant. However, a reference level for defining a very large αi has to be 
established. For STLF, two different references of irrelevance are needed: one for continu-
ous variables, such as loads and temperatures, and another for dummy variables, such as 
hours of the day and days of the week. Uniformly distributed input variables can be used 
to define the references of irrelevance. For continuous input variables, a uniform random 
variable with lower and upper limits equal to − 3  and 3, respectively, is used as refer-
ence of irrelevance, as continuous variables have been standardized (zero mean and unit 
variance). For dummy variables, the reference is a binary random variable with uniform 
distribution. These two reference variables are added to the preselected set of inputs.

After training the model with the preselected set of input variables, continuous and 
dummy variables are separately ranked. For each rank, the variables with correspond-
ing αis larger than αref (irrelevance level) are disregarded. After input selection, the MLP 
is retrained with the selected variables.

3.4.4  Illustrative Results

For a dataset, with hourly load and temperature values, containing 6 years of information, 
the task is to forecast up to 168 h (steps) ahead. With training data from the month to be 
forecast and from two months earlier, along with the data corresponding to the same 
“window” in the previous year, seven models are estimated, one for each day of the week.

As the initial set of inputs, the following variables are tested: 24 dummy variables codi-
fying the hour of the day; lags S(k – 1), S(k – 2), …, S(k – 6), S(k – 24), S(k – 25), …, 
S(k – 29), S(k – 168), S(k – 169), …, S(k – 173) for load, temperature, and temperature 
square series; the temperature forecast for hour k and its square value, that is, T(k) and 
T2(k), respectively; the daily maximum temperature forecast and its square value, Tmax(d) 
and Tmax

2  (d); and the daily maximum temperature for the previous day and its square 
value, Tmax(d – 1) and Tmax

2  (d – 1). Therefore, a total of 84 initial inputs (including dum-
mies) have been chosen. The output is the predicted hourly load L(k). As weather services 
can provide quite precise forecasts for the horizon of interest, true temperatures have 
been used as “perfect” predictions. The forecasts are provided by recursion, that is, load 
forecast feed inputs.

Figure 3.4 presents an illustrative result for this database. It shows predictions based 
on inputs selected by interdependence redundancy analysis and predictions provided by 
the set of inputs obtained from Bayesian selection. To establish a fair comparison, in 
both cases the initial set of inputs is the same, that is, the 84 variables previously 
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described. The improvement produced by the Bayesian selection is clear. Although 
interdependence redundancy analysis has the advantage of being model-independent, 
selection criteria based on relevance of input variables do not guarantee good-quality 
forecasts, as particular predisposition of ANN models and corresponding training algo-
rithms are not taken into account. In practice, as already mentioned, the two methods 
should be used in a sequential cooperative way, that is, interdependence redundancy 
preselects and the Bayesian training refines the input set.

3.5  MLP Structure Identification in Bayesian Training

Bayesian inference can also be used to determine the best MLP structure among a 
 predefined set of possibilities; for example, H = {H1, H2, . . ., HK}, for which the corre-
sponding inputs have been previously selected:

 
P H D

p D H P H
p Dh

h h( ) = ( ) ( )
( )  

(3.18)

In Equation 3.18, P(Hh) represents the a priori probability of model Hh and p(D|Hh) 
is given by

 
p D H p D H p Hh h h( ) = ( ) ( )∫∫ α β α β α β, , , d d

 
(3.19)
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FIGURE 3.4 One-week-ahead hourly forecasts.
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Using Gaussian approximation around the estimated hyperparameters (from train-
ing), analytic integration of Equation 3.19 is possible, leading to Equation 3.20:
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where m denotes the number of hidden neurons in the MLP model Hh. As all models, a 
priori, are assumed equally probable, Hh is selected by maximizing P(D|Hh), which is 
equivalent to maximizing ln p(D|Hh). Consequently, Equation 3.20 can be used for 
ranking and selecting among MLPs with different numbers of neurons in the hidden 
layer.

The complete Bayesian training algorithm for selecting inputs and identifying the 
MLP structure can be summarized by the following steps:

 1. Set the minimum and maximum number of neurons in the hidden layer Nmin and 
Nmax, respectively. Experience has shown that Nmin = 1 and Nmax = 10 can model 
the dynamics of any load series.

 2. Make the number of neurons in the hidden layer m = Nmin.
 3. Add the reference variables to the preselected set of inputs. Therefore, if dummy 

variables are used, the extended set will contain n = n + 2 inputs. Otherwise, if 
only continuous inputs are allowed, n = n + 1.

 4. Set l = 0 and initialize w l w l w l l l ln
t

n
t( ) [ ( ), , ( )] , ( ) [ ( ), , ( )]= =+ +1 3 1 3  α α α  and β(l).

 5. Minimize S w( ) on w l( ) to obtain w l( )+ 1 .
 6. Calculate αi (l + 1), β(l + 1) and γi(l + 1) using the following equations:
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 7. Make l = l + 1 and return to step 5 until convergence is achieved.
 8. Put into two different vectors the hyperparameters αi associated with continuous 

and discrete inputs and sort them in descending order.
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 9. For each sorted vector, select the inputs situated above the corresponding refer-
ence, that is, αi < αref, with αref been the hyperparameter associated with the 
 irrelevant added signal.

 10. Repeat steps 4–7 using only the inputs selected in step 9, with n equal to the num-
ber of variables selected, to obtain the trained model Hm.

 11. Evaluate the log evidence of the hypothesis Hm using Equation 3.20.
 12. If m = Nmax, go to step 13. Else, m = m + 1 and return to step 3.
 13. Select hypothesis Hk with the largest log evidence and make predictions.

In Equation 3.21, I i is an M × M diagonal matrix with ones at the positions corre-
sponding to the ith group of weights and with zeros otherwise. Mi is the number of 
connection weights in each group. Details on how to calculate the Hessian �� E w Us( , )  
can be found in the study by Bishop [20]. In fact, a straightforward adaptation of back-
propagation can be used to evaluate the second-order partial derivatives of the error 
with respect to the connection weights. Nabney [21] provides useful computational 
routines to implement the complete Bayesian training algorithm.

3.6  Estimation of Prediction Intervals

Although prediction intervals can be derived from Bayesian training, experience shows 
that the Gaussian distribution hypothesis is not reliable for this particular purpose. Alves 
da Silva and Moulin [8] have presented a prediction interval estimation method that is not 
dependent on the data distribution. In fact, it is not necessary to estimate density functions 
for computing prediction intervals. Cumulative distribution functions provide enough 
information for this purpose. The recommended technique is based on resampling.

3.6.1  Resampling Method

The sampling of prediction errors for each forecasting lead-time can be conducted in the 
following way. Consider that the resampling set is representative of the loads to be found 
in the future. In addition, assume that the error samples are independent with the same, 
although unknown, probability distributions.

Let us suppose that Figure 3.5 represents the available (known) test data. A recursive 
forecasting process (i.e., forecasts feeding the ANN), using three lagged inputs for pre-
dicting one to four steps ahead, is considered. The available load values for instants 1, 2, 
and 3 are used to predict the load for instant 4. As the true load value for instant 4 is 
known, the prediction error for this one-step-ahead forecast can be computed. 
Afterward, using the known values for instants 2 and 3, and the previous prediction for 
instant 4, a two-steps-ahead forecast is achieved, allowing the calculation of the corre-
sponding prediction error. The known value for instant 3 and the forecasts for instants 4 
and 5 are used to predict the load for instant 6, and so on. One prediction error measure-
ment for each lead-time has been gathered once the maximum desired prediction hori-
zon, instant 7, is reached.

The same procedure is repeated for collecting one more sample for each lead-time 
using the known values for instants 2–8 (upper dotted line). This process is repeated 
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until, for a certain window, the maximum desired prediction horizon reaches the end of 
the available load series.

Afterward, by sorting the n errors in ascending order (considering the signs) and 
representing them by z(1), z(2), . . ., z(n), the cumulative sample distribution function of the 
prediction errors can be estimated as follows:
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where Sn(z) is the fraction of the collection of errors less than or equal to z. When n is 
large enough, Sn(z) is a good approximation of F(z), the true cumulative probability dis-
tribution. Therefore, prediction intervals can be estimated by keeping the intermediate 
z(r)s and discarding the extreme ones, according to the desired confidence degree. The 
intervals are computed in order to be symmetrical in probability (not symmetric in z). 
The number of cases to discard in each tail of the prediction error distribution is np, 
where p is the probability in each tail. As np is generally a fractional number, it is con-
servatively truncated, and (np – 1) is taken as the number of cases to discard in each tail.

Denoting Zp such that F(Zp) is equal to p, then there is a probability p that an error is 
less than or equal to Zp. Therefore, Zp is the lower confidence limit for future forecast 
errors. Consequently, Z1−p is the upper limit and there is a (1 – 2p) confidence interval for 
future errors. The value nSn(Zp) represents the estimate of how many elements in the 
collection of errors are less than or equal to Zp. As the prediction errors are assumed to 
be independent of each other, then m = nSn(Zp) follows a binomial distribution
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independent of the distribution F.
In Equation 3.23, B(m,n,p) represents the probability that exactly m, among n ran-

domly sampled cases, are less than or equal to Zp. In fact, if B(m,n,p) is computed for 
m = 0, 1, . . ., n, it can be shown that the largest probability is obtained when m = np.

Emulated futurePast

1 2 3 4 5 6 7 8 9

FIGURE 3.5 Example of the resampling process for prediction interval estimation.
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3.6.2  Illustrative Results

Figures 3.6 and 3.7 show a week-ahead daily load peak forecasts for two 138 kV buses 
from the Brazilian system. Two years of data have been provided. To avoid recursion 
because of the jumpy dynamics of the peak load series, seven forecasting models have 
been estimated, one for each step ahead, using all data before the first day to be pre-
dicted. For the jth model, the initial inputs are related to the 7 most recent daily peak 
load values, plus j + 7 lagged temperature variables, and 19 dummy variables, 7 for the 
days of the week and 12 for the months. Therefore, a total of 33 + j initial inputs have 
been considered for each model. The lags for the load and temperature variables are 
L(d – j), L(d – j – 1), …, L(d – (6 + j)) and T(d), T(d – 1), …, T(d – (6 + j)), respectively, 
where d denotes the day to be predicted (i.e., d = 1, 2, …, 7). As before, true temperatures 
for the forecasting horizon are used as “predictions.” Each model output is the daily load 
peak L(d) of interest. The available temperature-related variables have been disregarded 
because of lack of significant interdependence.

120
125
130
135
140
145
150
155
160
165
170

27/2/2007 4/3/2007 9/3/2007 14/3/2007 19/3/2007 24/3/2007 29/3/2007 3/4/2007

Lo
ad

 (M
W

)

Load Forecast Lower prediction Upper prediction

FIGURE 3.6 Bus 1 daily load peak forecasting, seven days ahead, with prediction intervals.
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Results include prediction intervals with 90% of confidence degree. The removal of 
distributional assumptions usually generates wider but more reliable prediction inter-
vals. For bus 1, the following forecasting mean absolute percentage errors (MAPEs) have 
been obtained: 3.4, 3.6, 3.6, 3.7, 3.8, 3.8, and 3.8 for one, two, . . ., and seven days ahead, 
respectively. For bus 2, the MAPEs are the following: 4.0, 4.3, 4.7, 4.9, 5.2, 5.4, and 5.6 for 
one, two, . . ., and seven days ahead, respectively.

3.7  Conclusions

This chapter has presented efficient methodologies for implementing autonomous 
 neural-network-based short-term load forecasters. Autonomous means that both input 
selection and model structure identification are performed in an adaptive and automatic 
mode. The proposed methodologies provide reliable forecasts with very little interven-
tion from the user. They seem to be the answer for dealing with the large-scale bus load 
forecasting problem, in which the particular dynamics of each load series does not allow 
manually tuned solutions.

The input representation problem when applying neural network models to forecast 
electric loads has been overlooked for a long time. This chapter has explained recent 
developments for selecting inputs to MLP-based short-term load forecasters. An appro-
priate measure of information is presented for input preselection. Extensions of Bayesian 
methods are proposed for completing the ANN design. Motivations for choosing these 
techniques include data-driven nature, automatic application, and suitability for MLP 
models.

According to the prescribed approach, the MLP with the largest evidence is the 
selected one. A possibility for making the forecasts even more robust is to combine a 
certain number of MLPs, taking into account the corresponding evidences. Support 
vector regression has shown great potential for STLF [22]. However, one drawback of 
such a method is the difficulty in estimating the learning parameters [12]. The applica-
tion of Bayesian inference to overcome this problem looks very promising. Based on the 
advantages of the framework presented in this chapter, it seems worthwhile to pursue 
the recommended direction for the next generation of STLF tools.
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Appendix A3.1

Wavelet analysis uses a prototype function called mother wavelet (g(t)). This function 
has null mean and sharply drops in an oscillatory way, as in Figure A3.1.1. Data are rep-
resented by superposition of scaled and translated versions of the prespecified mother 
wavelet. The “continuous wavelet transform” (CWT) of a given signal x(t), with respect 
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to g(t), is defined in Equation A3.1.1, where a and b are the scale and translation factors, 
respectively.
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A CWT(a,b) coefficient, at a particular scale and translation, represents how well the 
original signal x(t) and the scaled/translated mother wavelet match. Thus, the set of all 
wavelet coefficients CWT(a,b), associated with a particular signal x(t), is the wavelet 
representation of the signal with respect to the mother wavelet g(t). As the CWT is 
achieved by continuously scaling and translating the mother wavelet, substantial redun-
dant information is generated. Therefore, instead of doing that, the mother wavelet can 
be scaled and translated using certain scales and positions based on powers of 
two. This scheme is more efficient and just as accurate as the CWT. It is known as the 
“discrete wavelet transform” (DWT), defined as
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FIGURE A3.1.1 Examples of mother wavelets: (a) Haar, (b) Daubechies of order 2, (c) Daubechies 
of order 3, and (d) Daubechies of order 4.
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The scaling and translation parameters a and b, in Equation A3.1.1, are functions of 
the integer variable m (a am= 0  and b nb am= 0 0 ). In Equation A3.1.2, k is an integer vari-
able that refers to a particular point of the input signal and n is the discrete time 
index.

A fast DWT procedure called pyramidal algorithm uses filters to obtain “approxima-
tions” and “details” from a given signal. An approximation is a low-frequency represen-
tation of the original signal, whereas a detail is the difference between two successive 
approximations. An approximation holds the general trend of the original signal, 
whereas a detail depicts high-frequency components of it. The pyramidal algorithm 
presents two stages: decomposition (analysis) and reconstruction (synthesis). The  former 
calculates the “fast wavelet transform” (FWT), whereas the latter computes the “inverse 
fast wavelet transform” (IFWT). Multiresolution can be obtained by using a filter 
bank composed of L, H, L′, and H′, as shown in Figure A3.1.2. The low- and high-pass 
decomposition filters (L and H) together with their corresponding reconstruction filters 
(L′ and H′) are based on mother wavelets.

Starting from signal S (i.e., x(n)), two sets of coefficients are produced by the FWT: 
approximation coefficients cA1 and detail coefficients cD1. This decomposition is 
obtained by convolving S with the low-pass filter L for approximation, and with the 
high-pass filter H for detail, followed by downsampling, that is, by throwing away every 
other coefficient. Conversely, starting from cA1 and cD1, the IFWT reconstructs S by 
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FIGURE A3.1.2 Single-resolution analysis via Mallat’s algorithm  (S = A1 + D1).
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inverting the decomposition stage. Inversion is achieved by inserting zeros between the 
wavelet coefficients (upsampling) and by convolving the resulting signal with the 
reconstruction filters L′ and H′ (Figure A3.1.2). Note that a multilevel decomposition 
process can be achieved according to Figure A3.1.3. The successive approximations are 
decomposed so that S is broken down into lower-resolution components.
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4.1  Introduction

Electricity price is an important signal for all participants of the electricity market and 
the motive behind most of their activities. Price forecast plays a major role in today’s 
power markets and is key input data for market participants. Companies that trade in 
electricity markets make extensive use of price forecast techniques either to bid or to 
hedge against volatility. However, despite the importance of electricity price prediction, 
it is a complex signal for forecasting. Electrical energy cannot be considerably stored and 
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power system frequency stability requires constant balance between generation and 
load. On short timescales, most users of electricity are unaware of or indifferent to its 
price [1]. Moreover, on a short timescale, transmission bottlenecks may prevent free 
exchange among different regions. These facts lead to extreme price volatility or even 
price spikes in the electricity market; for example, the price spikes of the PJM 
(Pennsylvania–New Jersey–Maryland) and California markets in 1999 and 2000, 
respectively [1,2]. Besides, volatility in fuel price, load uncertainty, fluctuations in hydro-
electricity production, generation uncertainty (outages), and behavior of market partici-
pants also contribute to electricity price uncertainty [3].

The electricity price signal features extreme jumps of magnitudes rarely seen in 
financial markets that also occur at greater frequency [4]. Amjady and Hemmati [5] 
have discussed how the uncertainty of hourly loads and some other stochastic signals, 
such as equipment outages and fuel prices, are combined resulting in a higher level 
of  uncertainty in the electricity price. For instance, the electricity price data of the 
PJM market, a well-established electricity market in the United States, are shown in 
Figure 4.1. High variability and volatility of the electricity price time series can be seen 
from this figure. Volatility of a signal is the measure of its change over a given period of 
time [3]. Two price spike thresholds of 150 and 200 $/MWh are also indicated by dash-
dot and dashed lines in Figure 4.1, respectively [4]. It is observed that many price spikes 
have occurred with both the price spike thresholds, further illustrating the volatile 
behavior of the electricity price time series.

Additionally, electricity price is a nonlinear time variant mapping function of its input 
features. It nonlinearly changes with respect to variations in the inputs. For instance, load 
demand is an important driver for electricity price. However, load variations in low- and 
high-load levels have different impacts on the electricity price. Moreover, its time-variant 
nature is related, for instance, to discrete changes in participants’ strategies (e.g., agents 
decide to switch from a conservative behavior to a more aggressive or risky one) or to 
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changes in market regulations. A discussion about the other characteristics of electricity 
price time series such as multiple seasonality (e.g., daily and weekly periodicities), high-
frequency changes, and high percentages of unusual prices (outliers) can be found in 
Reference [5].

4.2  Overview of Electricity Price Forecast Methods

Importance and complexity of electricity price forecast motivate many research works 
in the area. For short-term price forecast, considered in this chapter, forecast step is usu-
ally from a fraction of an hour (e.g., 5, 15, and 30 min) to an hour. Its forecast horizon 
can be from 1 h ahead to 1 week ahead. However, the most common forecast horizon for 
short-term price forecast is the next day, used in day-ahead electricity markets.

Due to the diverse nature of short-term electricity price forecast methods, a classifica-
tion of these techniques can give a better insight about them. However, one point should 
be mentioned here before proceeding to the classification of the price forecast methods. 
An essential characteristic of the electricity markets is the pricing mechanism, which 
can be uniform or pay-as-bid pricing. Under the uniform pricing structure, the mar-
ginal bid block sets the market clearing price (MCP). In the presence of congestion in the 
power system, locational marginal price (LMP), which is the marginal cost of each bus 
[3], should be considered instead of MCP. However, in the pay-as-bid (discriminatory) 
pricing structure, every winning block gets its bid price as its income. The pricing mech-
anism can affect the competition, efficiency, consumer surplus, and total revenue of the 
players in the electricity markets. More details about this matter can be found in 
Reference [6]. This chapter focuses on electricity price forecast in the uniform pricing 
structure, which is the most commonly accepted structure of electricity markets around 
the world. A discussion about price forecast in the pay-as-bid (discriminatory) pricing 
structure can be found in Reference [7].

4.2.1  Classification of Price Forecast Methods

A lot of forecast methods have been proposed for prediction of MCP or LMP of electric-
ity markets in the literature. Some of these methods are basically the short-term load 
forecasting (STLF) methods. However, electricity prices are usually more volatile than 
hourly loads and so short-term price forecasting is more complex than STLF.

In general, electricity price forecast methods can be divided into two main categories. 
Methods of the first category try to directly predict electricity price by analyzing the 
electricity market dynamics and effective parameters on the market price, such as pro-
duction costs and strategic behavior of market participants. An important group of 
these methods is based on the game and auction theories. Another group consists of 
fundamental or structural models, based on traditional cost models, which have been 
developed for centralized systems and adapted to liberalized markets [8]. Methods of the 
second category try to forecast MCP without analyzing in detail the underlying physical 
processes. These methods, based on the black box models, analyze price evolution by 
means of statistical data. Methods of the second category, such as those based on the 
time-series techniques and neural networks, are more commonly used for electricity 
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price forecast than those of the first category, due to greater flexibility, less input data 
required, and greater adaptability to market participants’ conditions.

A similar and more detailed classification of electricity price forecast methods has been 
presented by Weron [9], wherein the methods are divided into six classes including pro-
duction cost (or cost-based) models, equilibrium (or game theoretic) approaches, funda-
mental (or structural) methods, quantitative (or stochastic, econometric, reduced form) 
models, statistical approaches, and artificial intelligence-based techniques. Among these 
methods, artificial intelligence-based techniques have received more attention in recent 
years because of their high ability to tackle nonlinear complex input/output mapping func-
tions with limited available data. For instance, Guo and Luh [10] have discussed how neu-
ral networks are universal approximators and can approximate any continuous function.

A complete review of all electricity price forecast methods is beyond the scope of this 
chapter. In the next sections, artificial intelligence-based methods will be analyzed and 
evaluated.

4.2.2   Structure and Components of Artificial 
Intelligence-Based Price Forecast Methods

Structure of an artificial intelligence-based electricity price forecast strategy can be 
depicted as shown in Figure 4.2. At first, a data model is constructed based on the  available 

Performance
indices

Settings 

Normalized candidate inputs: NCI(t)

Candidate inputs: CI(t)

Normalized selected inputs: NSI(t)

Input data

Normalized forecasted price: P̂N(t)

Preprocess: normalization

Artificial intelligence
based forecasting engine

Data model construction

Feature selection

Postprocess

Forecasted price: P̂(t)

Fine-tuning of the
settings

FIGURE 4.2 Structure of an artificial intelligence-based electricity price forecast strategy.
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input data and engineering judgment. The candidate inputs of the data model, denoted by 
CI(t) in the figure, have different ranges and should be normalized. Then, the normalized 
candidate inputs NCI(t) are processed by a feature selection component to select the most 
informative features among them. The artificial intelligence-based forecasting engine 
(e.g., a neural network, combination of neural networks, or combination of neural 
 networks with other artificial intelligence systems) is fed by the normalized selected 
inputs NSI(t).

Both feature selection and the artificial intelligence-based forecasting engine usually 
have some settings, such as the number of neurons in the hidden layer(s) of the  multilayer 
perceptron (MLP) neural network. Performance of these components is dependent on 
the fine-tuning of these settings and different methods, such as cross-validation tech-
niques and search procedures, have been proposed for this purpose. The output of the 
forecasting engine, denoted by P tN( ) in Figure 4.2, will be in the normalized form. The 
normalized forecast price P tN( ) should be returned to the actual range, shown by P t( ) in 
the figure, by the inverse transform in the postprocess. Throughout this chapter, forecast 
values are shown by a circumflex accent.

The above components will be described in more detail in the next sections and 
 different alternatives for each component will be presented.

4.3   Input Data Preparation for 
Electricity Price Forecast

The first step of the setup phase for an artificial intelligence-based electricity price 
 forecast strategy is the input data preparation. For this purpose, the data model of the 
forecast process should be constructed and appropriately refined. The refined data 
model determines the input features of the artificial intelligence-based forecasting 
engine. In other words, the forecasting engine should learn and extract the input/output 
mapping function of the forecast process in the form of NSI(t) P tN( ). For the learning 
phase, the forecasting engine requires training samples that are constructed based on 
the historical data. Input and output features of these training samples are NSI(t) and 
P tN( ) in the previous time intervals, respectively.

4.3.1  Formation of Candidate Input Set

Electricity price is a nonlinear function of many candidate inputs including its past 
 values as well as past and forecast values of the exogenous variables (such as load demand 
and available generation). These candidate inputs constitute auto-regression and 
 cross-regression of the electricity price forecast model, respectively. Moreover, in 
 addition to the time-domain candidate inputs, the frequency domain may also contain 
some useful information for electricity price forecast. Thus, some candidate inputs from 
the frequency domain may also be considered in the data model of the forecast process. 
Consequently, two kinds of data model can be considered for electricity price prediction: 
a nonhybrid data model only including time domain candidate inputs and a hybrid data 
model containing both time- and frequency-domain candidate features.
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4.3.1.1  Nonhybrid Data Model

A large set of candidate inputs including lagged features as much as possible should be 
considered for electricity price prediction so that no informative candidate feature, 
which can be effective for the forecast process, is missed. The electricity price signal has 
a short-run trend characteristic (dependency on the previous neighboring hours’ values) 
as well as daily periodicity behavior (dependency on the values of the same hour in the 
previous days) and weekly periodicity behavior (dependency on the values of the same 
hour in the previous weeks). Taking into account these characteristics, data models 
including the lagged values of the price and exogenous variables up to, at least, 200 h ago 
plus the predicted values of the exogenous variables (provided that they are available) 
have been suggested for the electricity price forecast process by Amjady and Keynia 
[2,11]. For instance, based on this suggestion and only considering the load demand and 
available generation as the exogenous variables, the following nonhybrid data model can 
be constructed [2]:
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(4.1)

where P, L, and G indicate electricity price, load demand, and available generation, 
respectively. The forecast features of L t( )  and G t( )  may be either obtained from separate 
prediction processes or provided by the market operator.

4.3.1.2  Hybrid Data Model

The hybrid data models contain the information content of both time- and frequency- 
domain candidate features for the electricity price forecast process. Mathematical 
transformations are applied to signals to obtain further information that is not readily 
available in the raw time-domain signal. Fourier transform gives the spectral contents 
of the signal, but it gives no information regarding the time in which those spectral 
components appear. Thus, the conventional Fourier analysis is suited for dealing with 
frequencies that do not evolve with time, that is, stationary signals [12]. On the other 
hand, it is well known that electricity price has several nonstationary characteristics 
and should be considered as a nonstationary signal [11,13]. Short-time Fourier trans-
form provides the time information by computing different Fourier transforms for 
consecutive time intervals and putting them together. Consecutive time intervals of the 
signal are obtained by truncating the signal using a sliding windowing function. 
However, short-time Fourier transform gives a fixed resolution at all times. Low-
frequency estimates require long windows, whereas high-frequency ones need small 
windows.

Wavelet analysis overcomes the limitations of the Fourier analysis methods by using 
functions that retain a useful compromise between time location and frequency informa-
tion. Wavelets are located in time, despite trigonometric functions of the Fourier analysis. 
Moreover, they have a window that automatically adapts itself to give the appropriate reso-
lution. These characteristics enable wavelets to analyze many nonstationary signals [12]. 
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The one-dimensional continuous wavelet transform W(a,b) of signal f  (x) with respect to a 
wavelet ϕ(x) is given by

 
W a b
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1
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where the scale factor a controls the spread of the wavelet and shift parameter b determines 
its central position. φ( )x  is also called the mother wavelet. Daubechies wavelet of order 4 
(db4) [11], Daubechies wavelet of order 5 (db5) [14], Mexican hat [15], and Morlet wavelet 
[16] are some well-known mother wavelet functions that have been used in  previous elec-
tricity price forecast research works. Daubechies wavelets of orders 2–10 (db2–db10), 
Mexican hat, and Morlet wavelets are shown in Figures 4.3, 4.4, and 4.5, respectively.

Fourier analysis consists of breaking up a signal into sine waves of various frequen-
cies. Similarly, wavelet analysis is the breaking up of a signal into scaled and shifted 
versions of the mother wavelet. A W(a,b) coefficient represents how well the signal f(x) 
and the scaled/shifted mother wavelet match. Thus, the set of all wavelet coefficients 
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W(a,b), associated with a particular signal, is the wavelet representation of the signal 
with respect to the mother wavelet.

Similarly, discrete wavelet transform (DWT) for signal f(t), with discrete time t, can be 
written as follows:
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where T is the length of signal f(t). The scaling and shifting parameters are functions of 
the integer variables m and n (a = 2m, and b = n.2m). As electricity price time series 
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 usually represents a discrete one-dimensional signal, the DWT of Equation 4.3 is used 
in the associated electricity price forecast research works. A computationally efficient 
algorithm to implement DWT using quadrature mirror filters was developed by Mallat 
[17,18]. This algorithm has two stages: decomposition and reconstruction. In first stage, 
the original signal is passed through two complementary filters and emerges as two 
signals: approximation (general trend or low-frequency component) and detail (high-
frequency component). Each of these signals has the same number of data points, and 
these are downsampled by two to get the DWT coefficients. This decomposition can be 
iterated and successive approximations can be decomposed to many lower-resolution 
components. For instance, DWT decomposition with three decomposition levels is 
shown in Figure 4.6. Approximation A3 and three detail components D1, D2, and D3 are 
obtained from this decomposition process. In the second stage, these components can 
be reassembled into the original signal. Thus, wavelet decomposition involves filtering 
and downsampling, and wavelet reconstruction involves upsampling and filtering. 
Mathematical details of Mallat’s algorithm can be found in References [17,18]. For 
instance, the price time series of the PJM electricity market in October and November 
2008 along with its wavelet components A3, D3, D2, and D1 are shown in Figure 4.7. It 
can be seen that the price time series has both low- and high-frequency components (fast 
and slow changes in the time domain). However, approximation A3 is the low-frequency 
component and the detail subseries contain the high-frequency content of the price sig-
nal. D1 is the highest-frequency component. D2 is a lower-frequency component than 
D1, and D3 contains lower-frequency variations than D1 and D2. In this way, DWT can 
decompose the price signal to its components with different frequency contents.

DWT can be used in electricity price forecasting in three different ways. The first 
alternative is constructing a data model for the forecast process including candidate 
inputs from the original price time series and from wavelet domain subseries (e.g., A3, 
D1, D2, and D3 in Figure 4.6) [4,12]. In the second alternative, the electricity price time 
series is decomposed to wavelet components. Then, each component is separately pre-
dicted by a forecasting engine. Finally, the predictions of the components are returned 
to the original domain by the inverse transform to construct the price forecast. For 

A1 D1

Original signal f

A2

A3 D3

D2

FIGURE 4.6 Multilevel decomposition process with three decomposition levels. A and D stand 
for approximation and detail, respectively (f = A3 + D3 + D2 + D1).
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instance, this approach has been followed by Amjady and Keynia [11] and Conejo et al. 
[14]. The third option is merging wavelets with neural networks in the forecasting engine 
known as the wavelet neural network (WNN). WNN is a special case of single hidden 
layer feed-forward neural network with wavelets as the activation function of the hidden 
neurons [15,16].

Based on the first alternative, the hybrid data models can be constructed for  electricity 
price forecast. For instance, a hybrid data model can be constructed from the nonhybrid 
model of Equation 4.1 based on DWT decomposition with three decomposition levels 
(Figure 4.6) as follows:
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where A3(.), D1(.), D2(.), and D3(.) are the wavelet components of the signal P(.).
It is noted that the given explanations about the data model are general guidelines. 

However, the data model of an electricity price forecast process should be constructed 
keeping in mind the specific characteristics of the price signal and associated electricity 
market. For instance, wind power sources, as a kind of nonpollutant renewable energy, 
are rapidly grown in many countries around the world. Considerable amounts of wind 
power generation are currently seen in some power systems and it is expected that wind 
energy will become an important component in the supply mix to meet the growing 
demand for electric energy in the near future. However, wind power sources have con-
siderable differences with conventional generators. Wind is primarily an energy resource 
and not a capacity resource [19]. Thus, wind power generation may not be considered in 
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the available generation capacity G(.), and lagged and forecast values of wind power 
generation (as an exogenous variable) may be required to be taken into account in the 
data model of the electricity price forecast for electricity markets with high wind power 
integration.

4.3.2  Single-Stage Feature Selection Techniques

Feature selection is a well-known process in data mining that seeks optimal or subopti-
mal subsets of the original features by preserving the main information carried by the 
collected complete data, to facilitate future analysis for high-dimensional problems. The 
best subset contains the least number of dimensions that most contribute to accuracy; 
the remaining, unimportant dimensions are discarded. Feature selection usually plays a 
fundamental role in data mining, information retrieval, and, more generally, machine 
learning tasks for a variety of reasons, including facilitating data interpretation, reduc-
ing measurement and storage requirements, defying the curse of dimensionality, and, 
more importantly, improving generalization performance.

From the discussions in the previous sections, it can be seen that the data models of 
the electricity price forecast process usually have many candidate inputs such as the set 
of candidate inputs shown in Equations 4.1 and 4.4. However, such a large set of inputs 
is not directly applicable to a forecasting engine. Moreover, it may include ineffective 
features that complicate the extraction of the input/output mapping function of the pre-
diction process for the forecasting engine and degrade its performance. Thus, the set of 
candidate inputs CI(t) should be refined by a feature selection technique such that a 
minimum subset of the most informative features is selected and the other unimportant 
candidates are filtered out.

Feature selection algorithms can be classified into wrappers and filters. Wrappers 
search through the space of feature subsets using the estimated accuracy from a learning 
algorithm (here, the forecasting engine) as the measure of the goodness for a particular 
feature subset. A common choice for performing the evaluation in a wrapper method is 
cross-validation. Cross-validation techniques will be discussed in Section 4.5. The wrap-
per methods are usually restricted by the time complexity of the learning algorithm. 
When the number of candidate features is large, which is the case for electricity price 
forecast considering its data models, the wrappers may become prohibitively expensive 
to run, as too many subsets of the candidate inputs need to be constructed and evaluated 
by the forecasting engine. Thus, wrapper methods will not be discussed for the feature 
selection of electricity price forecast in this chapter. On the other hand, filter methods 
use criteria not involving any learning machine. In other words, filter methods select a 
subset of features independent of the learning algorithm. In these methods, features are 
selected based on intrinsic characteristics, which determine their relevance to the target. 
In this chapter, we focus on filter methods. Thus, hereafter, by “feature selection,” we 
mean “filter-type feature selection.”

Two kinds of feature selection methods are described in this chapter: single-stage and 
two-stage feature selection techniques. Single-stage methods evaluate relevancy of 
 candidate inputs with the target variable (forecast feature) and select the most relevant 
candidates for the prediction process. Three data mining criteria, including correlation 
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coefficient, mutual information, and RELIEF weights, will be presented in the next 
 sections. Two-stage feature selection techniques evaluate both relevancy and redun-
dancy (redundant information) of candidate inputs to select a subset of the most rele-
vant and least redundant candidates. These techniques are usually constructed by 
combining or extending single-stage methods.

It is noted that candidate inputs of the electricity price forecast process (such as the lagged 
prices and loads) have different ranges. Thus, to avoid the masking effect, candidate inputs 
should be first normalized. Suppose that a candidate input x is in the range of [xmin,xmax]. 
This range can be obtained from the historical data. The normalized form of x, denoted by 
xn, within the range [a,b], can be obtained from the following linear transformation:

 
x a x x b a

x xn = + − ⋅
−
−

( )min
max min  

(4.5)

Two common ranges for the normalized variables are [a,b] = [0,1] and [a,b] = [−1,1]. 
An advantage of the above linear transformation is that it does not distort the distribu-
tion of data. Each candidate input should be separately normalized based on its own 
minimum and maximum values. After the normalization process, all normalized can-
didate inputs will be in the range [a,b]. The feature selection is performed by the normal-
ized candidate inputs NCI(t), as shown in Figure 4.2. Finally, the inverse transform in 
the form of
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(4.6)

is executed in the postprocess (Figure 4.2) to transform the normalized forecast price 
P tN( ) to P t( ) in the actual range.

4.3.2.1  Correlation Analysis

Correlation analysis is a single-stage feature selection technique that has been used for 
feature selection of electricity price forecast in some research works [13,15]. The correla-
tion coefficient between two random variables x and y, denoted by ρx,y, can be computed 
from the following relation:

 
ρ

σ σx y
x y

x y
,

cov( , )
=

⋅  
(4.7)

In Equation 4.7, cov( , ) ( ).( )x y E x yx y= − −( )μ μ  is the covariance of x and y, where 
E(.) is the expected value operator and μx and μy represent expected values of x and y, 

respectively. Moreover, σ μx xE x= −( )( )2  and σ μy yE y= −( )( )2  are the standard 
deviations of x and y, respectively. In Equation 4.7, ρx,y = 1 corresponds to a perfect linear 
correlation whereas an intermediate value describes partial correlations, and ρx,y = 0 
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represents no correlation at all. In other words, higher ρx,y value results in more similar-
ity between x and y. To use correlation analysis to select candidate inputs for the 
 electricity price forecast process, the correlation coefficient between each candidate 
input and target variable (price of the next hour) is computed based on the historical 
data. Then, candidate features with a correlation coefficient greater than a threshold 
TH1 are selected as the relevant inputs and the remaining candidates with a correlation 
coefficient less than TH1 (less relevant features) are filtered out. Threshold TH1 is a set 
point or adjustable parameter of the feature selection technique. Fine-tuning of the 
adjustable parameters of a price prediction strategy (including those of the feature selec-
tion component and forecasting engine) will be discussed in Section 4.5.

Despite its simplicity, the correlation coefficient is a linear measure of 
cross- information and so a linear criterion for selecting candidate features. On the 
other hand, electricity price is a nonlinear mapping function of its inputs, as discussed 
in Section 4.1. Consequently, correlation analysis may not correctly evaluate the non-
linear dependencies of the electricity price signal and thus may not correctly evaluate 
the actual information value of candidate inputs for the forecast process. Therefore, 
this feature selection technique is not further discussed here. Instead, two nonlinear 
feature selection criteria, including mutual information and modified RELIEF, will be 
presented in the next two sections.

4.3.2.2  Mutual Information

A recently developed feature selection method is mutual information, which is based on 
the entropy concept. The individual entropy H(x) of a continuous random variable x 
with probability distribution P(x) is defined as follows [20,21]:

 
H x P x P x x( ) ( )log ( )= − ( )∫ 2 d

 
(4.8)

For a discrete random variable x with n values, H(x) is computed as follows:
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where P(xi) indicates probability of the value xi. Strictly, electricity price and its candi-
date inputs (such as the load demand, available generation, and wavelet components) are 
continuous random variables. However, in practice, we have a few samples of each of 
them based on the historical data. Thus, for the sake of simplicity, we treat electricity 
price and its candidate inputs as discrete random variables to introduce the mutual 
information-based feature selection technique. In this way, the integral operations 
required to compute mutual information (e.g., the integral in Equation 4.8) are reduced 
to summations (e.g., the summation in Equation 4.9).

The entropy is often considered a measure of uncertainty. For instance, suppose that the 
random variable x represents the occurrence of an event such that x has two values of 
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x1 = 0 (not occurred) and x2 = 1 (occurred). If we know without any uncertainty that the 
event has occurred [i.e., P(x1) = 0 and P(x2) = 1] or has not occurred [i.e., P(x1) = 1 and 
P(x2) = 0], then the individual entropy H(x) becomes zero. On the other hand, if there is 
high uncertainty about the occurrence/nonoccurrence of the event [i.e., P(x1) = 0.5 and 
P(x2) = 0.5] then the individual entropy H(x) becomes 1. This value represents the highest 
possible uncertainty about the random variable x.

The joint entropy H(x,y) of two discrete random variables x and y with n and m values, 
respectively, and joint probability distribution P(x,y) is defined as follows:
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where H(x,y) represents the total entropy of the random variables x and y. When the 
random variable x is known and y is not, the remaining uncertainty of y is measured by 
the conditional entropy:
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In other words, the conditional entropy H(y/x) indicates the remaining uncertainty of 
y after observing x. Mathematically, the joint entropy and conditional entropy have the 
following relationship, which is known as the chain rule [21]:

 H x y H x H y x H y H x y( , ) ( ) ( ) ( ) ( )= + = +  (4.12)

In other words, the total entropy of the random variables x and y is the individual 
entropy of x plus the remaining entropy of y for a given x.

In data mining, the information found commonly in two random variables x and y is 
of importance. This is known as the mutual information between the two variables, 
denoted by MI(x,y), which is defined as follows:
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If the mutual information between two random variables is large, the two variables 
are closely related and vice versa. If the mutual information becomes zero, the two 
random variables are totally unrelated or independent. The mutual information has 
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the following relationships with the individual entropy, joint entropy, and condi-
tional entropy:

 MI( , ) ( ) ( )x y H x H x y= −  (4.14)

 MI( , ) ( ) ( )x y H y H y x= −  (4.15)

 MI( , ) ( ) ( ) ( , )x y H x H y H x y= + −  (4.16)

 MI( , ) ( , )x y MI y x=  (4.17)

 MI( , ) ( )x x H x=  (4.18)

Figure 4.8 gives a better insight into the above relationships. On the basis of Equation 
4.14, the mutual information MI(x,y) measures how much the uncertainty of x is reduced 
if y has been observed. A similar conclusion is obtained from Equation 4.15 for y by 
observing x. If x and y are independent, their mutual information becomes zero; that is, 
observing y does not reduce the uncertainty of x and vice versa. In this case, 
H(x,y) = H(x) + H(y) based on Equation 4.16. As the two random variables x and y have 
no common information, their joint entropy becomes the sum of their individual entro-
pies. On the other hand, if the two random variables x and y become completely related, 
which occurs when x = y, then, according to Equation 4.18, the mutual information 
between these two variables reaches its maximum value H(x).

To use the mutual information technique for the feature selection of electricity price 
forecast, assume that the set of normalized candidate inputs includes y1, y2, . . .,  yN. For 
instance, these candidate inputs can include time-domain features as shown in 

H(x)

H(x/y) MI(x,y)

H(x,y)

H( y/x)

H( y)

FIGURE 4.8 Illustration of individual entropies, conditional entropies, joint entropy, and 
mutual information for two random variables x and y.
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Equation  4.1 for a nonhybrid data model and can include both time- and wavelet-
domain features as shown in Equation 4.4 for a hybrid data model. The candidate input 
ym ( 1 ʺ ʺm N ) owning more mutual information MI(x,ym) with the target variable x 
(the forecast feature or the next-hour normalized price) is a better candidate input fea-
ture, as by considering ym the uncertainty of x reduces more than using other candidate 
inputs. Consequently, the mutual information MI(x,ym) can assign a value to each can-
didate input ym for forecasting the target variable x. In other words, we can rank candi-
date inputs based on their mutual information with the target variable or their 
information value for the forecast process. Then, candidate inputs with the mutual 
information MI(x,ym) greater than the relevancy threshold TH1 are selected as relevant 
features for price forecast and other less relevant candidates are filtered out. It is noted 
that the appropriate values of threshold TH1 for the mutual information technique can 
be different from its appropriate values for correlation analysis. In general, the 
threshold(s) of each feature selection method should be specifically fine-tuned for it.

An important issue for the implementation of the mutual information-based  feature 
selection technique is efficiently constructing the individual and joint probability 
 distributions shown in Equation 4.13. Even considering the nonhybrid data model of 
Equation  4.1, 602 mutual information values, by the number of candidate inputs, 
should be computed in each feature selection phase. Thus, 603 individual probability 
 distribution functions (for 602 candidate inputs and one output feature) and 602 joint 
probability distribution functions are required. Consequently, a computationally 
 efficient method should be adopted to construct these probability distributions. One 
solution is to  incorporate data quantization as an initial processing step for feature 
selection. A binary quantization approach has been proposed for this purpose by 
Amjady and Keynia [2], which is a good compromise between computation burden 
and estimation accuracy. In this approach, the median of the normalized candidate 
inputs and the output feature is first computed. Half the number of values of each 
normalized variable is more than its median which is rounded to 1 and the other half 
is less than it which is rounded to 0. After this process, a binomial distribution is 
obtained for each candidate input and the target variable. On the basis of the 
 constructed binomial distributions, MI(x,y) in Equation 4.13 can be approximated as 
follows:
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Each of the individual and joint probabilities in the above equation can be easily com-
puted on the basis of the historical data. Another alternative is tristate quantization, in 
which each of the input and output features is quantized into three states at the positions 
μ ± δ (μ is the mean value and δ is the standard deviation of the feature): it takes –1 if it 
is less than μ – δ, +1 if larger than μ + δ, and 0 if otherwise [22]. For the tristate 
q uantization, Equation 4.13 becomes as follows:
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Similarly, the individual and joint probability values of Equation 4.20 can be obtained 
from the historical data. Quantization with more than three states can also be considered. 
However, with more states, less historical data can be assigned to each state. Thus, the con-
struction of the individual and joint probability distributions required for the computation 
of mutual information values becomes more complex and even inaccurate. For applications 
where it is unclear how to properly quantize the input/output features, an alternative solu-
tion is to use a density estimation method (e.g., Parzen windows) to approximate MI(x,y) [22].

4.3.2.3  Modified RELIEF

The RELIEF algorithm is a nonlinear feature selection method that uses instance-based 
learning to assign a relevance weight to each feature. The key idea of RELIEF is to 
 iteratively estimate feature weights according to their ability to discriminate between 
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neighboring patterns [23]. In other words, RELIEF strives to reinforce similarities between 
instances of the same class and simultaneously decrease similarities between instances of 
opposite classes where similarity is defined by proximity in the feature space [24].

In each iteration, the RELIEF algorithm works by randomly selecting a training 
 sample TS from the training set. Then, two nearest neighbors for the selected sample TS 
are found, one from the same class (called the nearest hit or NH) and the other from a 
different class (called the nearest miss or NM). A feature’s weight is updated according 
to how well its values distinguish the selected sample TS from its nearest hit NH(TS) and 
its nearest miss NM(TS). A feature receives a high weight if it largely varies between 
samples from opposite classes [e.g., TS and NM(TS)] and has close values for samples of 
the same class [e.g., TS and NH(TS)].

To find the nearest neighbors of the selected sample, we should have a distance 
 measure. The Euclidean distance can be used for this purpose. For instance, the 
Euclidean distance between TS and NH(TS) is defined as follows:
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where D(TS,NH(TS)) is the Euclidean distance between the vectors of TS and NH(TS); 
the dot sign indicates the inner product of two vectors; ∙.∙ represents the Euclidean 
norm. In the RELIEF algorithm, the relevance weights of all features are first initialized 
to zero. Then, all feature weights are updated on the basis of the randomly selected sam-
ple TS in each iteration as follows:

 
W W ii i i i i i= + − ( ) − − ( ) =TS NM TS TS NH TS DIM NCI( ) ( ) ( ) ( ) , , , , ( )1 2 

 
(4.22)

where Wi is the relevance weight of ith feature; TS(i), NM(i)(TS), and NH(i)(TS) indicate 
the ith feature of TS, NM(TS) and NH(TS), respectively; DIM(NCI) represents the 
dimension (number of features) of the set of normalized candidate inputs NCI. If TS(i) 
and NM(i)(TS) have different values, the ith candidate input discriminates two samples 
from different classes. This is desirable and so Wi increases according to Equation 4.22. 
On the other hand, if TS(i) and NH(i)(TS) have different values, the ith candidate input 
separates two samples from the same class. This is inconsistent and so Wi decreases 
according to Equation 4.22. In other words, a relevant feature should largely change 
between dissimilar samples and slightly change (or does not change in the ideal case) 
between similar samples. The cycle of randomly selecting the sample TS, finding its 
nearest hit NH(TS) and nearest miss NM(TS), and updating the feature weights Wi is 
repeated until the maximum number of iterations (which is a user-defined parameter) is 
reached. Then, the RELIEF algorithm is terminated and the candidate inputs are ranked 
according to the weight values finally obtained.

Using the RELIEF algorithm for the feature selection of electricity price forecasting 
has an inconsistency. RELIEF can only be used for two class problems, which can be 
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seen from its formulation. However, for electricity price forecasting, the output feature 
is a continuous variable and so the nearest hit and nearest miss cannot be found. To 
remedy this inconsistency, a modification is proposed for the RELIEF algorithm here. 
The resultant algorithm is called modified RELIEF. Assume that x represents the 
 continuous output feature and x  indicates its mean. Construct the auxiliary variable 
z x x= − . Considering z = 0 , the training samples of the training set can be catego-
rized into two classes based on the positive and negative values of z. Thus, the RELIEF 
algorithm can be applied for the feature selection of the problem. For instance, if the 
auxiliary variable z corresponding to the output feature x of the randomly selected 
training sample TS becomes positive, the NH(TS) and NM(TS) should be the nearest 
samples to TS with the positive and negative values of z, respectively. To compute the 
auxiliary variable z for electricity price forecasting, the output feature x can be selected 
as the electricity price P(t) or normalized electricity price PN(t), as the linear normaliza-
tion introduced in Equation 4.5 does not change the distribution of P(t). The auxiliary 
 variable z is only used to determine NH(TS) and NM(TS) for the randomly selected 
sample TS. However, it is noted that the feature weights are computed by means of 
Equation 4.22 for the normalized candidate inputs. After determining the relevance 
weights for all normalized candidate inputs, the features with Wi greater than the 
 relevancy threshold TH1 are selected as relevant features for the price forecast process.

Amjady et al. [25] present an extended form of the modified RELIEF algorithm in 
which k nearest misses and hits are used instead of one nearest miss and hit. Moreover, 
that version of the modified RELIEF algorithm simultaneously considers all training 
samples to determine the relevance weights, whereas the RELIEF algorithm takes into 
account a few randomly selected training samples such that only one of them is used in 
each iteration.

4.3.3  Two-Stage Feature Selection Techniques

Single-stage feature selection techniques only consider relevancy of the candidate inputs 
with the target variable to select the informative features for the machine learning 
 process. Here, the aim of the machine learning process is extraction of the input/output 
mapping function of the electricity price forecast. Although the relevancy of a candidate 
input is a necessary condition for selecting the candidate, it may not be a sufficient con-
dition. In feature selection, it has been recognized that the combinations of individually 
good features do not necessarily lead to good classification performance. In other words, 
“the m best features are not the best m features” [22]. This is because the individually 
relevant features may have redundant information, which decreases the whole 
 information content of the set of relevant features. For electricity price forecasting that 
many candidate inputs are successive lagged features [such as P(t − 1), P(t − 2), etc.] and 
some candidate inputs have close dependencies [such as P(t − k) and L(t − k)], evaluating 
the redundant information between candidate features is an important issue for  selecting 
the most informative set of inputs. Thus, feature selection methods that can evaluate 
both relevancy and redundancy of the candidate features are required for electricity 
price forecasting. Two-stage feature selection techniques are presented here for this 
 purpose. These feature selection methods consist of irrelevancy and redundancy filters 
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to filter out irrelevant and redundant candidate inputs. On the basis of the filter methods 
previously presented, three two-stage feature selection techniques, including two-stage 
correlation analysis, two-stage mutual information, and modified RELIEF combined 
with mutual information, will be presented in the next sections.

4.3.3.1  Two-Stage Correlation Analysis

Two-stage correlation analysis can evaluate the linear independency of the candidate 
inputs in addition to their correlation with the target variable and so it can filter out 
redundant information and collinear candidate inputs in addition to uncorrelated can-
didates. The structure of this feature selection technique is shown in Figure 4.9. The first 
stage of this feature selection technique includes an irrelevancy filter based on correla-
tion analysis. Relevant candidate inputs with a correlation coefficient with the target 
variable more than TH1 pass this filter. The remaining uncorrelated candidate features 
with the correlation coefficient less than TH1 are filtered out. Note that

 Subset of relevantcandidateinputs Subset of irrelevantcandidat eeinputs NCI= ( )t  

The performance of the first stage or irrelevancy filter has been described in Section 
4.3.2.1. In the second stage of the two-stage feature selection technique, a redundancy 
filter analyzes the “subset of relevant candidate inputs” that pass the irrelevancy filter. 
A cross-correlation analysis is performed in the redundancy filter of the two-stage cor-
relation analysis. If the correlation coefficient between any two candidate features is 
smaller than a prespecified threshold TH2, then both features are retained; else, only 
the feature with the larger correlation coefficient with the target variable is retained, 
whereas the other is not considered any further [26,27]. The redundancy  filtering pro-
cess is continued until no redundant feature is found among the subset of relevant 
candidate inputs.

The union of the filtered and retained features of the redundancy filter is the outcome 
of the irrelevancy filter. The threshold TH2 is a degree of freedom for the two-stage 

Subset of redundant  
candidate inputs

Subset of irrelevant  
candidate inputsTwo-stage

feature 
selection Subset of relevant candidate inputs

Normalized candidate inputs: NCI(t)

Subset of relevant and non-redundant candidate 
inputs: normalized selected inputs (NSI(t))

Second stage: redundancy filter 

First stage: irrelevancy filter 

FIGURE 4.9 Structure of a two-stage feature selection technique.
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 correlation analysis similar to TH1. The two-stage feature selection techniques with two 
filters have two threshold set points. The outcome of the redundancy filter is the final 
result of the two-stage feature selection technique including the normalized selected 
inputs NSI(t), as shown in Figure 4.9. These inputs are applied to the forecasting engine 
(Figure 4.2). The filtered candidate inputs in the first and second stages comprise all the 
filtered features of this feature selection technique.

4.3.3.2  Two-Stage Mutual Information

Deficiency of the correlation analysis for the feature selection of electricity price 
 forecasting has been described in Section 4.3.2.1. A more efficient two-stage feature 
selection technique can be implemented on the basis of the mutual information  criterion. 
Two-stage mutual information follows the same logic of two-stage correlation analysis. 
However, the measure of mutual information is used in this feature selection technique 
instead of correlation coefficient. The first stage implements a mutual information-based 
irrelevancy filter, the same as described in Section 4.3.2.2. Then, a mutual information-
based redundancy filtering process is performed on the candidate inputs that pass the 
first stage.

Higher value of mutual information between two selected features of the first stage yk 
and ym, that is, higher MI(yk,ym), means more common information between yk and ym. 
Thus, these features have a higher level of redundancy. Therefore, the following redun-
dancy criterion RC(.) is defined to measure the redundancy of each feature, yk∈Subset of 
relevant candidate inputs, with the other features of this subset:
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It is seen that ym belongs to the subset of relevant candidate inputs–{yk} in Equation 4.23 
as each feature is fully redundant with itself; thus, we should exclude yk from this subset. 
We can rank the candidate features of the subset according to the redundancy measure 
of Equation 4.23 such that a higher value of RC(yk) means yk is a more redundant feature 
or equivalently a less informative candidate input. If RC(yk) becomes greater than the 
redundancy threshold TH2, yk is considered as a redundant candidate input and so 
between this candidate and its competitor, one feature should be filtered out. For 
instance, suppose that yk has the highest redundancy (mutual information) with yc 
among all features of the subset of relevant candidate inputs–{yk}. Hence, the following 
relationship can be written:
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In such a case, yc is called the competitor of yk. If MI(yk,yc) > TH2, between yk and its 
competitor yc, one feature should be filtered out. For this purpose, the relevancy factors 
of these features including MI(yk,x) and MI(yc,x) are considered (x indicates the target 
variable or forecast feature). The feature with the lower relevancy factor (less relevant 
feature or less effective feature for the forecast process) is removed. The redundancy 
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 filtering process is repeated for all features of the subset of relevant candidate inputs 
until the no-redundancy measure of Equation 4.23 becomes greater than TH2. The fea-
tures of this subset that pass the redundancy filter, having RC(.) less than TH2, comprise 
the selected features of the two-stage mutual information technique, including relevant 
and nonredundant candidate inputs.

4.3.3.3  Modified RELIEF and Mutual Information

The first stage or irrelevancy filter of this feature selection technique is modified RELIEF, 
as presented in Section 4.3.2.3. The second stage includes a mutual information-based 
redundancy filter as described in the previous section.

The thresholds TH1 and TH2 have different effects on the finally selected features of 
a two-stage feature selection technique. By increasing TH1, more candidate inputs are 
considered as irrelevant features and filtered out in the first stage. In other words, the 
rejection band of the irrelevancy filter increases leading to less features in the subset of 
relevant candidate inputs. On the other hand, higher values of TH2 broaden the pass 
band of the redundancy filter, as more candidate inputs with higher levels of redundant 
information are allowed to pass the redundancy filter. Thus, the performance of a two-
stage feature selection technique is dependent on the fine-tuning of these settings. Some 
techniques for this purpose will be introduced in Section 4.5.

Although two-stage feature selection techniques use single-stage methods as the 
irrelevancy filter, the values of the threshold TH1 used for two-stage and single-stage 
feature selection techniques are different. For instance, values of the threshold TH1 used 
for single-stage mutual information techniques and for the irrelevancy filter of two-
stage mutual information methods are different. Single-stage methods are only based on 
one filter. Thus, higher values of the threshold TH1 (narrower pass bands) may be 
selected for these methods such that a reasonable number of selected inputs, which can 
be applicable to the forecasting engine, are obtained. On the other hand, the irrelevancy 
filter of a  two-stage feature selection method should have lower values of the threshold 
TH1 (wider pass bands), such that a sufficiently large subset of relevant candidate inputs 
is obtained for the second filter and the number of features finally selected does not 
become too low.

Some representative results comparing the single-stage and two-stage feature 
 selection methods are presented in Tables 4.1 through 4.4 to give a better insight into 

TABLE 4.1 MAPE Values (%) Obtained by Different Feature Selection Methods for 
Day-Ahead Price Forecast of the Four Test Weeks of the PJM Electricity Market in 2010

Test Week
Correlation 

Analysis
Mutual 

Information
Modified 
RELIEF

Two-Stage 
Correlation 

Analysis

Two-Stage 
Mutual 

Information

Modified RELIEF 
and Mutual 
Information

Winter 7.04 6.49 6.54 6.29 5.61 5.75
Spring 7.54 6.73 6.71 6.27 5.75 5.84
Summer 7.91 7.26 7.42 6.76 6.21 6.32
Fall 7.38 6.89 7.13 6.67 5.52 5.31
Average 7.47 6.84 6.95 6.50 5.77 5.81
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their performance. The real effectiveness of a feature selection method can be evaluated 
on the basis of the quality of the forecast results obtained using that method. Thus, in 
this numerical experiment, the artificial intelligence-based electricity price forecast 
strategy, shown in Figure 4.2, is separately implemented with each of the presented fea-
ture selection methods, and the results obtained are reported in Tables 4.1 through 4.4. 
For the sake of a fair comparison, the other parts of the strategy are kept unchanged for 
all applied feature selection techniques. The nonhybrid data model of Equation 4.1 is 
used for all feature selection methods shown in Tables 4.1 through 4.4. Moreover, the 
linear transformation of Equation 4.5 with [a,b] = [0,1] and its inverse transform 
Equation 4.6 are used for the preprocess (normalization) and postprocess blocks of 
Figure 4.2, respectively. Furthermore, cascaded neural networks are used as the 

TABLE 4.3 VAR Values (×10−4) Obtained by Different Feature Selection Methods for 
Day-Ahead Price Forecast of the Four Test Weeks of the PJM Electricity Market in 2010

Test Week
Correlation 

Analysis
Mutual 

Information
Modified 
RELIEF

Two-Stage 
Correlation 

Analysis

Two-Stage 
Mutual 

Information

Modified RELIEF 
and Mutual 
Information

Winter 52.15 38.54 41.84 35.53 30.18 30.72
Spring 54.28 43.94 45.08 32.98 31.28 30.19
Summer 55.42 45.37 46.53 33.95 30.53 31.38
Fall 53.07 41.64 44.78 33.12 31.59 32.25
Average 53.73 42.37 44.56 33.89 30.89 31.13

TABLE 4.2 AMAPE Values (%) Obtained by Different Feature Selection Methods for 
Day-Ahead Price Forecast of the Four Test Weeks of the PJM Electricity Market in 2010

Test Week
Correlation 

Analysis
Mutual 

Information
Modified 
RELIEF

Two-Stage 
Correlation 

Analysis

Two-Stage 
Mutual 

Information

Modified RELIEF 
and Mutual 
Information

Winter 6.89 6.26 6.33 6.02 5.39 5.57
Spring 7.38 6.55 6.58 6.11 5.67 5.71
Summer 7.74 7.02 7.22 6.58 6.12 6.24
Fall 7.19 6.62 7.00 6.52 5.25 5.26
Average 7.30 6.61 6.78 6.31 5.61 5.69

TABLE 4.4 AVAR Values (×10−4) Obtained by Different Feature Selection Methods for 
Day-Ahead Price Forecast of the Four Test Weeks of the PJM Electricity Market in 2010

Test Week
Correlation 

Analysis
Mutual 

Information
Modified 
RELIEF

Two-Stage 
Correlation 

Analysis

Two-Stage 
Mutual 

Information

Modified RELIEF 
and Mutual 
Information

Winter 52.24 38.29 42.67 33.81 30.47 31.28
Spring 53.35 44.34 44.38 32.66 30.32 30.09
Summer 54.62 44.61 45.57 34.52 30.49 31.33
Fall 53.72 41.29 45.59 33.34 32.04 30.86
Average 53.48 42.13 44.55 33.58 30.83 30.89
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 forecasting engine and line search procedure for fine-tuning the settings for all methods 
in Tables 4.1 through 4.4. These two components will be introduced in Sections 4.4.2.1 
and 4.5.2, respectively.

This numerical experiment is performed by the real data of the PJM electricity market 
in 2010. Four test weeks corresponding to four seasons of 2010 (including the fourth 
weeks of February, May, August, and November) are considered here, indicated in the 
first column of Tables 4.1 through 4.4. This is to represent the whole year in the numeri-
cal experiment. The historical data of 50 days prior to each forecast day including 
50 × 24 = 1200 h samples is used for both the feature selection technique and the fore-
casting engine of the strategy (Figure 4.2) in the day-ahead electricity price forecast of 
this numerical experiment. For instance, the individual and joint probability values of 
the mutual information, discussed in Section 4.3.2.2, are computed based on this his-
torical data.

The forecasting accuracy is the main concern for power engineers. The first error 
criterion used in this numerical experiment, measuring the forecasting accuracy, is 
mean absolute percentage error (MAPE), defined as follows:
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where NH indicates the number of hours in the test period. In this numerical experi-
ment with weekly test periods, NH = 168. In this equation, P(t) and P t( ) represent the 
actual and forecast values of electricity price for hour t of the test period. It is noted that 
the length of the forecasting horizon for the day-ahead hourly electricity price predic-
tion of this numerical experiment is 24 h or 24 forecast steps. In other words, the fore-
casting engine proceeds by 24 steps in each prediction stage. Then, the historical data are 
updated at the end of each day and the price forecast of the next day is performed by the 
updated data. However, each test period in Tables 4.1 through 4.4 is 1 week, to give a 
better evaluation of the prediction performance over a longer period. The prediction 
results for each test week are obtained from seven successive day-ahead forecast 
processes.

As the electricity price could be close to zero, the MAPE could be large even if the 
price forecast has a small deviation from the actual value. To remedy this problem, 
another version of MAPE, denoted here by AMAPE, is defined as follows:
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where Pave is as follows:
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In other words, the average of actual prices or Pave is used for the denominator of AMAPE, 
instead of P(t), to avoid the adverse effect of prices close to zero. Results obtained for MAPE 
and AMAPE in this numerical experiment are reported in Tables 4.1 and 4.2, respectively.

In addition to accuracy, the stability of forecast results is another important issue for 
a prediction process. A stable forecast process should have low uncertainty, which is 
usually measured by the statistical dispersion of the forecast errors. For instance, the 
variance of electricity price forecast errors has been used as an index of uncertainty for 
the prediction results in several studies [1,2,14,28]. Lower values of the error variance 
mean less statistical dispersion of the forecast errors leading to a more stable electricity 
price prediction process. Consistent with the MAPE and AMAPE definitions in 
Equations 4.25 and 4.26, variance (VAR) and alternative variance (AVAR) for the fore-
cast errors are defined as follows:
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To better illustrate the concepts of forecast accuracy and forecast stability, two kinds 
of prediction errors with normal distribution are shown in Figure 4.10. The first error 
series, shown by a black solid line, has mean absolute error 0.9 and standard deviation 
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FIGURE 4.10 Forecast error series with mean absolute error 0.9 and standard deviation 0.2 
(black, solid line) and forecast error series with mean absolute error 1 and standard deviation 0.1 
(gray, dashed line).
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0.2, while the second one, shown by a gray dashed line, has mean absolute error 1 and 
standard deviation 0.1. In Figure 4.10, although the first error series has better accuracy 
in terms of mean absolute error, larger oscillations are seen in its error curve. Thus, the 
results of the first forecast method may have more uncertainty leading to a more  unstable 
prediction process. The second forecast method with more stable results may be 
 preferable for some electricity market participants to design the bidding strategy and 
risk analysis.

From Tables 4.1 through 4.4 it can be seen that, among the single-stage feature 
 selection techniques, mutual information and modified RELIEF lead to both better 
price forecast accuracy (lower values of MAPE and AMAPE) and better price forecast 
stability (lower values of VAR and AVAR) than correlation analysis. Mutual information 
and modified RELIEF can better evaluate the impact of different candidate inputs on the 
target variable in a nonlinear forecast process than correlation analysis. MAPE, AMAPE, 
VAR, and AVAR values of mutual information are close to those of the modified RELIEF. 
Tables 4.1 through 4.4 also show that the two-stage feature selection methods perform 
better than the single-stage techniques. Even the two-stage correlation analysis leads to 
better forecast accuracy and stability than the single-stage techniques of mutual 
 information and modified RELIEF revealing the importance of considering redundant 
information in the feature selection processes. However, the nonlinear feature selection 
methods of two-stage mutual information and modified RELIEF combined with mutual 
information have lower values of MAPE, AMAPE, VAR, and AVAR than the linear fea-
ture selection technique of two-stage correlation analysis. The performance measures of 
the two-stage mutual information are close to those of the modified RELIEF combined 
with mutual information.

From Tables 4.1 and 4.2, it can be seen that the AMAPE values follow the same trend 
of the MAPE values. However, the AMAPE values are slightly lower than their corre-
sponding MAPE values due to the softening effect of AMAPE that makes softer sharp 
errors. Similar conclusions can be drawn comparing the VAR and AVAR values in 
Tables 4.3 and 4.4.

To better illustrate the performance of the feature selection process, sample results, 
including the selected features for the forecast day May 23, 2010 of the PJM electricity 
market (a test day from the spring test week), are shown in Table 4.5. For the sake of 
conciseness, this more detailed analysis is only performed for the most accurate feature 
selection method in Tables 4.1 through 4.4, that is, the two-stage mutual information 
technique.

In the first stage of the two-stage mutual information method, 60 features are selected 
by the irrelevancy filter. Considering 602 candidate inputs in the nonhybrid data model 
of Equation 4.1, the filtering ratio of this filter becomes 602/60 = 10.03. The second stage 
or redundancy filter removes redundant features among the 60 selected candidate inputs 
of the first stage; 23 features out of the 60 candidate inputs can pass the redundancy fil-
ter. These 23 features and their ranks are shown in Table 4.5. The ranks of the finally 
selected candidate inputs are determined on the basis of their relevancy factors or 
mutual information with the target variable. The filtering ratio of the irrelevancy filter is 
60/23 = 2.61. Although the filtering ratio of the irrelevancy filter is greater than that of 
the redundancy filter, the second stage is more competitive than the first. The initial set 
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of candidate inputs or CI(t) in Equation 4.1 usually includes many ineffective features 
that are filtered out by the irrelevancy filter. However, the 60 selected candidate inputs of 
the first stage are relevant features. In other words, in the second stage, the competition 
is among more qualified candidate inputs that pass the first qualification and so select-
ing informative features among them is a more critical task. By combining the filtering 
ratios of the two stages, the filtering ratio of the whole two-stage mutual information 
technique for this test case is determined as 10.03 × 2.61 = 26.17, which can also be 
obtained from 602/23 = 26.17. It is seen that the feature selection process can effectively 
filter out the ineffective candidate features and reduce the size of the input set for the 
forecasting engine.

From these results another important point can also be seen. Although the two-stage 
feature selection methods usually perform better than the single-stage techniques, they 
require more computation effort. For instance, the single-stage feature selection 
 technique of mutual information requires the computation of 602 mutual information 
values between each candidate input and target variable for this test case. The two-stage 

TABLE 4.5 Results Obtained from the Two-Stage Mutual 
Information Technique (Finally Selected Candidate Inputs) 
for the Day-Ahead Price Forecast of the PJM Electricity 
Market on May 23, 2010

Rank Selected Feature

1 P(t − 1)
2 L t( )

3 L(t − 1)
4 P(t − 2)
5 L(t − 168)
6 P(t − 168)
7 L(t − 24)
8 P(t − 24)
9 P(t − 23)
10 P(t − 25)
11 L(t − 167)
12 P(t − 192)
13 P(t − 144)
14 P(t − 169)
15 L(t − 144)
16 L(t − 169)
17 P(t − 48)
18 P(t − 120)
19 L(t − 23)
20 L(t − 25)
21 G(t − 1)
22 G(t − 24)
23 L(t − 72)
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mutual information method also requires this computation for its first stage. 
Additionally, mutual information values between all pairs of the selected candidate 
inputs of the first stage by the number of
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should also be computed for the redundancy filter. In other words, the computation 
burden of the second stage is about 1770/602 = 2.94 times more than the computation 
burden of the first stage for this test case. Thus, for the forecast processes with serious 
limits on the computation time, the single-stage methods may be preferable.

Among the 23 selected features in Table 4.5, 11 candidate inputs are from the auto-
regression part of the data model (past values of the electricity price signal) and 12 fea-
tures are from the cross-regression part (past and forecast values of the exogenous 
variables of load and available generation). These results illustrate the importance of 
modeling electricity price signal as a multivariate forecast process as more than half of 
the selected features are from the external variables in this test case. This information 
content is not accessible in the univariate electricity price forecast processes only relying 
on the history of price. Among the 12 selected candidate inputs of the exogenous vari-
ables, 10 load features and 2 available generation features are seen, as load is a more 
important price driver than available generation.

Short-run trend, daily periodicity, and weekly periodicity, characteristics of the elec-
tricity price time series have been discussed in Section 4.3.1.1. The effect of these charac-
teristics can be observed from the results reported in Table 4.5. Price, load, and available 
generation of the previous neighboring hours [including P(t − 1), P(t − 2), L(t − 1), and 
G(t − 1)] are among the selected features of this table representing the effect of short-run 
trend characteristic of the price signal. Moreover, the features of the same hour in the 
previous day [including P(t − 24), L(t − 24), and G(t − 24)] are selected, indicating the 
daily periodicity behavior of the electricity price time series. Some features of the same 
hour a few days ago [such as P(t − 48) = P(t − 2 × 24), L(t − 72) = L(t − 3 × 24)] are also 
seen among the selected features representing the multiperiod effect of the daily period-
icity characteristic. Furthermore, the features of the same hour in the previous week 
[including P(t − 168) and L(t − 168)] are selected by the two-stage mutual information 
technique, indicating the effect of weekly periodicity. The price time series largely takes 
these periodic behaviors from its most important driver, that is, the load time series [29]. 
Finally, the combined effects of these characteristics can also be seen from the selected 
candidate inputs in Table 4.5. For instance, the combined effect of short-run trend and 
daily periodicity behavior results in the selection of some neighboring hours around the 
same hour in the previous day, such as the selection of P(t − 23) = P(t − 24 + 1), 
P(t − 25) = P(t − 24–1), L(t − 23) = L(t − 24 + 1), and L(t − 25) = L(t − 24 – 1). Similarly, 
the combined effect of short-run trend and weekly periodicity behavior results in the 
selection of L(t − 167) = L(t − 168 + 1) and L(t − 169) = L(t − 168 – 1) and the combined 
effect of daily and weekly periodicity characteristics leads to the selection of 
P(t − 144) = P(t − 168 + 24) and P(t − 192) = P(t − 168–24).
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It should be noted that the previous discussion only presents general guidelines for 
the feature selection of electricity price forecast. However, this is not to say that the 
selected candidate inputs of Table 4.5 are the best subset of features for any electricity 
price forecast process. Price drivers are dependent on the electricity market and so the 
selected features for price forecast may change from an electricity market to another 
one. Even the selected candidate inputs may change from one forecast day to another 
due to the time-variant behavior of the input/output mapping function of the electricity 
price signal, discussed in Section 4.1. Hence, it is better to separately perform the feature 
selection analysis for each electricity market and each forecast horizon (e.g., each fore-
cast day) by the latest available data.

4.4  Electricity Price Forecast Engines

The forecasting engine is fed by the feature selection technique such that the selected 
candidate features are considered as the inputs of the forecasting engine. Thus, the mis-
sion of the forecasting engine is constructing an input/output mapping function for the 
electricity price prediction process in the form of NSI(t) P tN ( ) as shown in Figure 4.2. 
In this section, some efficient price forecast engines are presented, which can be catego-
rized as nonhybrid and hybrid methods. These two categories will be introduced in the 
next sections.

4.4.1  Nonhybrid Price Forecast Engines

Here, we call the electricity price forecast methods that only contain a single prediction 
technique (e.g., a time series technique, an expert system, a neural network, etc.) as the 
nonhybrid price forecast engines. These forecast engines are usually simpler than the 
hybrid forecast methods, but their performance may be lower. Among the nonhybrid 
forecasting engines, time-series techniques and neural networks, used more than the 
other methods for electricity price prediction, have been introduced here.

4.4.1.1  Time-Series Techniques

Although time-series techniques usually are not taken into account as artificial intelli-
gence-based forecasting engines, they are discussed here as these methods are used in 
many electricity price prediction research works. Among the time-series methods, auto-
regressive integrated moving average (ARIMA), dynamic regression, and transfer func-
tion models have gained more attention for electricity price prediction due to their easy 
implementation and relatively good performance. For instance, ARIMA, dynamic 
regression, and transfer function methods have been used for electricity price forecast-
ing in several studies [14,28,30–33]. In the following, ARIMA time series and its variants 
are detailed. Dynamic regression and transfer function models have similar structures.

An auto-regressive moving average (ARMA) model for prediction of x(t) can be 
expressed as follows [30]:

 φ θ ε( ) ( ) ( ) ( )B x t c B t⋅ = + ⋅  (4.31)
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where x(t) is the value of the target variable (here, normalized electricity price) at time t; 
c is a constant term; ε(t) is the error term at time t. Usually, ε(t) is assumed to be an inde-
pendently and identically distributed normal random variable with zero mean and con-
stant variance σε

2 , that is, a Gaussian white noise process [32,33]. In Equation 4.31, ϕ(B) 
and θ(B) are polynomial functions of the backshift operator B as follows:
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Note that

 B x t x t k B t t kk k⋅ = − ⋅ = −( ) ( ), ( ) ( )ε ε  (4.34)

In Equation 4.31, ϕ(B).x(t) constitutes the auto-regressive (AR) part and θ(B).ε(t) is 
the moving average (MA) part, both of which together construct the ARMA model. On 
the basis of Equations 4.32 and 4.33, the degree of the AR and MA parts is p and q, 
respectively. Thus, these parts are denoted as AR(p) and MA(q), respectively, and so the 
ARMA model of Equation 4.31 is referred to as ARMA(p,q). The ARMA model of 
Equation 4.31 is a univariate forecast model. An effective extension to the ARMA model 
is the multivariate ARMA or ARMAX [34]. The ARMAX model explicitly includes the 
effect of exogenous variables, such as load and available generation, for electricity price 
forecast. In the ARMAX, a delay polynomial, similar to ϕ(B) and θ(B), is also considered 
for each exogenous variable. The free parameters of the ARMA(p,q) model include c, ϕk 
(1 ʺ ʺk p ), and θk (1 ʺ ʺk q ). For the ARMAX model, the coefficients of the delay 
polynomials of the exogenous variables (similar to ϕk and θk) should also be considered. 
These free parameters are estimated based on the historical data, for instance, by the 
least-squares approach or its variants [35]. It is noted that only the lagged features of the 
target variable and the exogenous variables that have been selected by the feature selec-
tion technique, that is, the selected candidate inputs, have a nonzero coefficient in the 
corresponding delay polynomials.

Another well-known extension to the ARMA model is ARIMA. Consider the dth-
order differenced series z(t) constructed from the target variable series x(t) as follows:

 z t B x td( ) ( ) ( )= − ⋅1  (4.35)

The ARMA(p,q) model for the differenced series z(t) is referred to as the ARIMA(p,q,d) 
model for the original series x(t) [33]. Thus, the ARIMA model can be represented as 
follows:

 φ θ ε( ) ( ) ( ) ( ) ( )B B x t c B td⋅ − ⋅ = + ⋅1  (4.36)
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Nonstationary behavior in a time series arises from instability in the mean and vari-
ance of the series. The differentiation of the ARIMA model is usually used to deal with 
the nonstationary behavior induced by the variable mean. To stabilize the variance, 
several transformations, such as Box–Cox transformation [31], can be applied to the 
originals series.

Similar to ARMAX, a multivariate ARIMA model can be constructed by considering 
a delay polynomial for each exogenous variable in the ARIMA model. The ARMA and 
ARIMA models are nonseasonal models. To take into account the periodic behaviors of 
the target variable, the seasonal ARMA model

 φ θ ε( ) ( ) ( ) ( ) ( ) ( )B B x t c B B ts s⋅ ⋅ = + ⋅ ⋅Φ Θ  (4.37)

and the seasonal ARIMA model

 φ θ ε( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )B B B B x t c B B ts d s D s⋅ ⋅ − ⋅ − ⋅ = + ⋅ ⋅Φ Θ1 1  (4.38)

can be used. In Equations 4.37 and 4.38, the delay polynomials ϕ(B) and θ(B) are as 
defined in Equations 4.32 and 4.33, respectively; Φ( )Bs  and Θ( )Bs  are polynomial func-
tions of Bs instead of B. Similar to Equation 4.34, Bs ⋅ x(t) = x(t – s). The order s repre-
sents the corresponding seasonality. For instance, to model daily and weekly periodicity 
characteristics of the hourly price time series, s = 24 and s = 168 should be taken into 
account, respectively. In the above models, ϕ(B) and θ(B) are referred to as nonseasonal 
parts and Φ( )Bs  and Θ( )Bs  are called seasonal parts. Considering P and Q as the orders 
of the delay polynomials Φ( )Bs  and Θ( )Bs , as the functions of Bs, the ARMA model of 
Equation 4.37 is shown by ARMA(p,q)(P,Q)s and the ARIMA model of Equation 4.38 is 
illustrated by ARIMA(p,q,d)(P,Q,D)s.

As previously described, both the ARMA and ARIMA models are dependent on the 
homoskedastic assumption of constant variance σε

2  for the error term ε(t). On the other 
hand, the forecasting models that are not based on the constant variance assumption 
are called heteroskedastic. Garcia et al. [36] present a heteroskedastic time-series tech-
nique, known as the generalized auto-regressive conditional heteroskedastic (GARCH) 
model, which can consider time dependent error variance and also model serial corre-
lation in it.

4.4.1.2  Multilayer Perceptron Neural Network

The electricity price forecast process NSI(t) P tN ( ), shown in Figure 4.2, is a nonlinear 
input/output mapping function. Theoretically, neural networks can represent any non-
linear function. In general, a neural network is a computer information processing sys-
tem that simulates the function of the human brain. A discussion about biological 
neurons and modeling their performance in the neural networks (more accurately, arti-
ficial neural networks) can be found in Reference [3]. Among different neural networks, 
the MLP has received more attention for electricity price forecasting due to its flexibility 
and efficient learning algorithms developed for it. In this section, the MLP neural net-
work and some of its commonly used training mechanisms are described.
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The structure of an MLP neural network is shown in Figure 4.11. Observe from this 
figure that the MLP structure has one input layer, a few hidden layers, and one output 
layer. Each layer is composed of parallel processing units (also called cells, nodes, and 
neurons) that act in parallel and usually perform similar processing tasks (i.e., they have 
similar activation functions) [37]. The first layer of the MLP or input layer receives infor-
mation (m inputs in Figure 4.11) from the outside world. For electricity price forecasting, 
these inputs are those selected by the feature selection technique or the candidate fea-
tures in NSI(t). The last layer or the output layer gives the outputs of the neural network 
(p outputs in Figure 4.11) to the outside world after the incoming information is pro-
cessed by the network. Between input and output layers of the MLP structure, there are 
hidden layers. The hidden layers only connect to each other or to the input and output 
layers. These layers do not have any connection to the outside world and so are called 
hidden layers. According to Kolmogorov’s theorem [27], an MLP neural network can 
solve a problem by using one hidden layer, provided it has the proper number of neu-
rons. Thus, one hidden layer may be used in the MLP structure (n = 1), but the number 
of its neurons must properly be selected. Hereafter, we focus on this MLP structure with 
a single hidden layer. This choice has the advantage of having a minimum number of 
parameters to be adjusted numerically, as the number of nodes of each hidden layer is an 
adjustable parameter for the MLP neural network.

In the MLP structure, each hidden layer neuron is connected by weights (Figure 4.11) 
to all neurons of the input and output layers. For instance, consider the connection 
between two neurons in the input and hidden layers. The output of the input layer node 
is multiplied by the corresponding weight and its weighted form is received at the input 
of the hidden layer node. In the fully connected structure of the MLP, each neuron in the 
hidden and output layers receives a vector of weighted outputs generated by the neurons 
of the previous layer. These neurons sum their received weighted inputs. Then, the result 
is applied to a nonlinear function called activation function of the neuron. For instance, 
the sigmoid and the hyperbolic tangent are two well-known activation functions of the 
hidden and output layer nodes of the MLP neural network [38]. The output of the 
 activation function is the output of the neuron. Each input layer node has one input as 
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FIGURE 4.11 Structure of a multilayer perceptron (MLP) neural network (narrow lines illus-
trate the weights of the MLP).
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shown in Figure 4.11. Moreover, these nodes usually do not perform any processing task. 
In other words, their activation functions are identity function [I(x) = x]. The input layer 
nodes only propagate inputs of the MLP to the next hidden layer. The nodes of the hid-
den and output layers process their inputs and generate their outputs until the outputs 
of the MLP (the outputs of the last layer shown in Figure 4.11) are produced. This is 
known as forward propagation in the MLP neural network. For this reason, MLP some-
times is considered as a feed-forward neural network.

From the above explanations, it can be seen that, by combining nonlinear activation 
functions, MLP constructs an input/output mapping function to map its inputs to the 
outputs. In other words, MLP constructs complex nonlinear mapping functions by 
combining simpler ones. From the linear algebra viewpoint, the activation functions of 
MLP act as the elements of the basis set. Thus, more efficient activation functions 
enhance the capability of MLP to construct a larger set of nonlinear functions. This is 
still a matter of research. For instance, WNN is a kind of MLP that uses mother wavelets 
as the activation functions of the hidden layer nodes [15,16]. The weights of the MLP are 
the coefficients of the combination. It can be said that the weights are the degrees of 
freedom of the neural network. The role of weights for an MLP neural network is similar 
to the role of free parameters (c, ϕK, and θK) for an ARMA time-series model.

MLP adapts its weights based on training samples taken from different operating 
points of the problem (here, electricity price forecast process). Indeed, this characteristic 
gives a learning ability to MLP, as, by adjusting its weights, MLP can construct a specific 
mapping function for the problem under consideration. The learning algorithm of the 
neural network performs this task. Usually, the weights of MLP are randomly initial-
ized. In other words, the learning algorithm begins from a random initial point and 
determines the weights of the MLP so that the error of mapping the inputs of the train-
ing samples to their outputs is minimized with the expectation that a low error is also 
obtained for the unseen test samples. For instance, for day-ahead price prediction, these 
test samples can be 24-h forecast samples of the next day. Various learning algorithms 
have been presented for the MLP neural network in the literature. For instance, many of 
these learning algorithms and different activation functions are available in the neural 
network tool box of MATLAB® software package [39]. For electricity price forecasting, 
LM (Levenberg–Marquardt), BFGS (Broyden, Fletcher, Goldfarb, Shanno), and BR 
(Bayesian regularization) are three commonly used training mechanisms. A description 
of these learning algorithms can be found in References [26,40]. After training, the 
weights of the MLP are determined and the trained neural network can be used for price 
forecasting of the next time intervals.

An effective method to cope with the time-variant behavior of the input/output map-
ping function of the electricity price signal is adaptive training in which the weights of 
the MLP neural network are regularly updated based on the latest available data. For 
instance, for day-ahead price forecasting, the training phase of the MLP can be repeated 
each day considering the newly obtained data of that day.

Day-ahead electricity price prediction by the MLP neural network can be implemented 
by two approaches including direct forecasting and iterative forecasting [11]. In direct 
forecasting, the number of output layer nodes (p in Figure 4.11) is equal to the length of 
the forecasting horizon. For instance, for hourly price prediction of the next day, p = 24 
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in direct forecasting. By means of this approach, the future values of the electricity price 
signal are directly predicted from the MLP outputs. On the other hand, the neural net-
work has one output node in the iterative forecasting method. Multiperiod price forecast, 
for example, prediction of electricity price for the next 24 h, is reached through recursion, 
that is, by feeding input variables with the neural network’s outputs. For instance, pre-
dicted price for the first hour is used as P(t − 1) for the price forecast of the second hour 
provided that P(t − 1) is among the selected candidate inputs of NSI(t). Iterative  forecasting 
may lead to cumulative error for the last time intervals of the forecasting horizon. On the 
other hand, in direct forecasting, the MLP neural network should learn the mapping 
function between the inputs and much more outputs (e.g., 24 outputs). This complicates 
the learning task of the MLP and may decrease its training efficiency. For this reason, 
iterative forecasting is used more than direct forecasting in the electricity price  prediction 
research works using neural network-based forecasting engines.

4.4.2  Hybrid Price Forecast Engines

Hybrid forecast engines are constructed by hybridizing single prediction methods, such 
as combining neural networks with each other or combining neural networks with 
other forecast techniques. By combining forecast capabilities of different methods, 
hybrid price forecast engines have the potential to attain better prediction performance 
than nonhybrid forecast methods. However, effectiveness of a hybrid forecast engine is 
dependent on its building blocks, structure, and data flow. It cannot be said that any 
hybrid forecast method has prediction performance superior to that of a nonhybrid fore-
cast technique. Even a poor design could lead to inferior performance of a hybrid fore-
cast engine compared with its building blocks. For instance, Catalão et  al. [41] have 
presented a hybrid price forecast method that is composed of wavelet transform, particle 
swarm optimization, and adaptive network-based fuzzy inference system. It has been 
shown that this hybrid method outperforms several other time series and neural net-
work-based forecast engines for the price prediction of a well-known case study from the 
electricity market of mainland Spain. On the other hand, the prediction results of differ-
ent forecast methods used in the third Makridakis competition (M3-Competition) have 
been analyzed by Makridakis and Hibon [42] and it is concluded that “Statistically 
sophisticated or complex methods do not necessarily produce more accurate forecasts 
than simpler ones” (p. 458). Thus, care must be taken in the design of the hybrid forecast 
methods including their building blocks, structure, and data flow.

In this section, three hybrid electricity price forecast engines are introduced. Also, a 
numerical comparison between these hybrid forecast engines and some nonhybrid elec-
tricity price prediction methods is presented.

4.4.2.1  Cascaded Neural Networks

The structure of cascaded neural networks (CNNs) is shown in Figure 4.12. This 
 forecasting engine includes a set of forecasters arranged in sequence. Each forecaster is an 
MLP, although other kinds of neural networks can be used as well. Observe in Figure 4.12 
that the number of cascaded forecasters is the number of time intervals of the forecasting 
horizon, that is, NH. On the basis of the terminology adopted in this chapter, P tN ( ) 
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 represents the predicted electricity price for the next time interval and so P tN ( )+ −NH 1  
indicates the predicted price for the last time interval of the forecasting horizon. For day-
ahead hourly price forecasting, NH = 24 and P tN ( ), . . .,  P t P tN N( ) ( )+ − = +NH 1 23  
represent the predicted prices for the next 24 h.

In CNNs, each MLP neural network is trained to learn the input/output mapping 
function between the electricity price of one time interval and its corresponding selected 
inputs or NSI(t). In other words, the price time series of each time interval is separately 
modeled and predicted in this forecasting engine. CNNs can be considered a compro-
mise between direct forecasting and iterative forecasting. Each MLP of a CNN has one 
output node similar to iterative forecasting. The single output of each MLP provides the 
price forecast of its corresponding time interval, as shown in Figure 4.12. At the same 
time, the predictions of the future values of the electricity price signal are directly 
obtained from the outputs of the MLP neural networks. If forecaster #k of the CNN 
[predicting P t kN ( )+ − 1 ] requires P tN ( ) , . . ., P t kN ( )+ − 2  related to the previous time 
intervals of the forecasting horizon (such as the previous hours of the forecast day), these 
predictions are provided by its previous forecasters, that is, forecasters #1, . . ., #k − 1. For 
instance, assume that the price of the previous time interval is among the selected inputs 
of NSI(t). Then, forecaster #2 should obtain this feature from the predicted price of fore-
caster #1, despite iterative forecasting based on a single MLP that the forecaster obtains 
this feature from its own previously predicted price.

In CNNs, the training samples of each MLP neural network reduce by 1/NH. Thus, 
the training efficiency of the forecasters may decrease. Although we can enlarge the 
training set by considering a longer training period, it means that old historical data are 
included in the training set. Considering time variant behavior of the electricity price 
signal, old historical data may have poor relevance or even be misleading for the training 
of the forecasting engine. Despite this deficiency, CNNs can have better prediction per-
formance than a single MLP. CNNs can better model the periodic behavior of the elec-
tricity price signal. For instance, a CNN with 24 forecasters can effectively model the 
daily periodicity characteristic of the hourly price time series. Garcia-Martos et al. [43] 
have discussed how the 24 price time series constructed in this way are more homog-
enous. This simplifies the learning task of the forecasters. Moreover, each neural net-
work of the CNN should predict one step ahead despite a single MLP that should predict 
the price values of all time intervals of the forecasting horizon (e.g., 24 h ahead).

Cascaded 
neural 

networks
. . .

Normalized selected inputs: NSI(t)

P̂N (t)  P̂N (t + NH – 1)

Forecaster #1 (MLP) Forecaster #NH  (MLP) 

FIGURE 4.12 Structure of cascaded neural networks.
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4.4.2.2  Hybrid Neural Networks

As described in the previous section, electricity price is a nonlinear mapping function 
of many input variables. It is very hard for a single neural network to correctly learn the 
impact of all of these inputs on electricity price. Thus, enhancing the learning capabil-
ity of a neural network-based forecasting engine can significantly improve its price 
forecast performance. A well-designed combination of different neural networks can 
potentially enhance their learning capability in modeling a complex process. For 
 example, some parallel and cascaded structures for combining neural networks with 
improved price prediction performance have been proposed in various studies [8,10,44]. 
Moreover, CNNs, introduced in the previous section, are a cascaded structure of neural 
networks. However, these structures share the input data among their building blocks. 
Thus, the extracted knowledge of a block is not really shared with other blocks. In the 
hybrid neural network (HNN), on the other hand, a knowledge transfer  procedure is 
envisioned from one neural network to another. For instance, the architecture of HNN, 
including three neural networks, is shown in Figure 4.13 [25]. These neural networks, 
denoted by NN1, NN2, and NN3 in the figure, have the same MLP structure.

Figure 4.13 shows that each neural network of the HNN transfers two sets of informa-
tion to the next neural network. The first set includes the values obtained for the weights. 
As described in Section 4.4.1.2, usually, the weights of an MLP neural network are ran-
domly initialized. Then, the MLP stores its extracted knowledge during the learning 
process in its weights. Thus, each neural network of the HNN transfers its obtained 
knowledge to the next one. Consequently, the next neural network can begin its learning 
process from the point that the previous one terminated (instead of beginning from a 
random point). Only the first neural network should begin with an initial set of random 

Final forecast for target variable 

HNN

 Initial forecast for
 target variable

NN1(LM)

NN2 (BFGS)

NN3 (BR) 

Auxiliary predictor (ARIMA)

Weights Target variable forecast of NN1

Weights Target variable forecast of NN2

FIGURE 4.13 Architecture of a hybrid neural network and its auxiliary predictor.
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values for the weights. As all neural networks of the HNN have the same MLP structure, 
these weights can be directly used by the next neural network and then it can increase 
the obtained knowledge of the previous one. Additionally, by selecting a variety of MLP 
learning algorithms for the neural networks, the HNN can benefit from wider learning 
capability. The three neural networks of the HNN in Figure 4.13 have LM, BFGS, and BR 
learning algorithms. Further discussions justifying these choices can be found in 
Reference [25].

The second set of results transferred from a neural network of the HNN to the next 
one is target variable forecast. This is due to the fact that the predicted price values, 
obtained from the other prediction methods, can be useful information for the price 
forecast of a forecaster. Thus, the obtained price forecast of each neural network of the 
HNN is used by the next one. In this way, each neural network of the HNN has an 
input close to its output feature, which enhances the training efficiency of the neural 
network to learn the behaviors and patterns of the target variable. In other words, 
each neural network of the HNN uses both the obtained knowledge and forecast 
result of its previous one. For the first neural network of the HNN, an auxiliary pre-
dictor provides the target variable forecast. This auxiliary predictor is chosen as the 
ARIMA time series for the HNN in a study by Amjady et al. [25] used for electricity 
price forecast (shown in Figure 4.13) and as the radial basis function (RBF) neural 
network for the HNN in another study by Amjady et  al. [45] used for wind power 
prediction.

The auxiliary predictor is fed by the selected candidate inputs of the feature selection 
part, that is, NSI(t). The first neural network of the HNN is supplied with the selected 
candidate inputs plus the price forecast provided by the auxiliary predictor. NN2 of the 
HNN uses the same input features of NN1 except that the price forecast of the auxiliary 
predictor is replaced by the price forecast of NN1, as the price forecast of each block usu-
ally has better accuracy than the previous one and so can be a better choice for the input 
feature of the next block. Similarly, the input features of NN3 of the HNN include the 
selected candidate inputs plus the price forecast of NN2.

After the setup process for the auxiliary predictor and neural networks of the HNN, 
this forecast engine can predict price values for the time intervals of the forecasting 
horizon. MLP blocks of the HNN have one output node and so multiperiod price fore-
cast is achieved through iterative forecasting described in Section 4.4.1.2. If we can use 
more accurate forecasts for initial time intervals, error propagation decreases and better 
predictions for all later intervals can be obtained. In other words, the problem of cumu-
lative error for iterative forecasting is mitigated. The HNN has the potential to do that. 
For this purpose, each neural network of the HNN and also the auxiliary predictor, 
instead of recursive forecasting the price values of the whole time intervals of the fore-
casting horizon (e.g., 24 h ahead), only predicts the next-hour price and transfers it to 
the following block until the final price prediction of the HNN for that time interval is 
obtained by NN3 (as shown in Figure 4.13). This final price forecast, owning the least 
prediction error in the entire system, is used in the auxiliary predictor and neural net-
works of the HNN to predict its next-hour price. This cycle is repeated until the price 
values of the whole time intervals are predicted.



4-38 Electric Power Systems

4.4.2.3  Hybrid Neuroevolutionary System

The structure of a hybrid neuroevolutionary system (HNES) including three 
 neuroevolutionary blocks is shown in Figure 4.14 [26]. Observe that HNES is composed 
of neuroevolutionary blocks whereas building blocks of the HNN are the MLP neural 
networks. The neuroevolutionary blocks of the HNES have the same MLP structure, 
similar to the neural networks of the HNN. However, they are trained by a combination 
of neural network learning and evolutionary algorithms, whereas the training mecha-
nisms of the neural networks of the HNN only include learning algorithms. This is the 
main difference between HNN and HNES.

As described in Section 4.4.1.2, the learning algorithm of an MLP neural network 
tries to optimize its weight values such that the error of the training samples or training 
error is minimized. For electricity price prediction, near-optimum solutions of this 
optimization problem are usually close to each other in the solution space. Each  potential 
solution of the optimization problem includes all the weight values of the MLP neural 
network. At the end of the training phase, the learning algorithm of the MLP may find 
one of these near-optimum solutions, whereas the better ones might be in its vicinity 
and remain unseen for the neural network, as the learning algorithms usually search the 
solution space in a special direction (like the steepest descent). Hence, this provides the 
motivation to search around the final solution of the learning algorithm in various 
directions as much as possible to find a better solution. An evolutionary algorithm (EA) 
can be a suitable candidate for what is required. All EA parts of the HNES, denoted by 

Final forecast for target variable

HNES

Initial forecast for
target variable 

Neuroevolutionary block 1 (LM + EA1)

Neuroevolutionary block 2 (BFGS + EA2)

Neuroevolutionary block 3 (BR + EA3)

Target variable forecast of NN1

Auxiliary predictor (ARIMA)

Weights

Target variable forecast of  NN2Weights 

FIGURE 4.14 Architecture of a hybrid neuroevolutionary system and its auxiliary predictor.
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EA1, EA2, and EA3 in Figure 4.14, have the same evolution mechanism that can be 
described as follows:

 Δ ΔW m W m g Wi n i n i n( ) ( ) ( ). ( ). .+ = + −1 1  (4.39)

 W W Wi n i n i n( ) ( ) ( )+ += +1 1Δ  (4.40)

where Wi represents the ith element of the vector W containing all the weights of the 
MLP neural network; ΔWi indicates change of Wi; subscripts n and n + 1 represent two 
successive generations (parent and child, respectively) of the EA; g is a small random 
number separately generated for each weight; and m is the momentum constant. Use of 
the momentum can smooth the search path decreasing sudden changes. For electricity 
price forecasting, m = 0.5 and selection of g in the range of (0,0.1) for all generations of 
the EA could be appropriate choices. In other words, a uniform search without using 
localizing techniques (such as a hill climbing operator [46]) is recommended for the EA 
parts of the HNES. Nonuniform searches are suitable when there is one optimum point 
in the solution space and it is desired that the stochastic search technique, like EA, con-
verges to it. However, in the optimization problem of the neural network training, there 
are several optimum solutions and each one may be better than the other.

To start the EA evolution, Wi(0) is initialized as the obtained value from the MLP learn-
ing algorithm for the weight Wi and ΔWi(0) is set to zero. In each cycle, the EA updates all 
weights Wi by means of Equations 4.39 and 4.40. Then, the error function of the MLP is 
evaluated for the solution of the new generation, that is, W(n+1). This error function can be 
the training error or the validation error of the MLP neural network, which will be intro-
duced in the next section. If the child W(n+1) has less error function value than its parent 
W(n), the parent is replaced by the child, otherwise the parent is restored and the next cycle 
of the EA is executed. So, at the end of the EA, the best obtained solution with the lowest 
error function value among all generations will be selected.

The EA is executed after each learning algorithm of the HNES to enhance the train-
ing efficiency as much as possible. This matter is shown in Figure 4.14 for the three 
neuroevolutionary components of the HNES as “neuroevolutionary block 1 
(LM + EA1),” “neuroevolutionary block 2 (BFGS + EA2),” and “neuroevolutionary 
block 3 (BR + EA3),” respectively. So, the whole training phase of the HNES can be 
represented as follows:
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where the vector WInitial includes the initial values for the weights. WInitial is obtained 
from random initialization. The LM learning algorithm of the neuroevolutionary block 
1 of the HNES, shown in Figure 4.14, begins from WInitial. When the LM algorithm ter-
minates, the values obtained for the weights, denoted by W(LM) in Equation 4.41, are 
given to its corresponding EA or EA1. Termination conditions for the neural network 
learning algorithms will be introduced in the next section. Then, EA1 further optimizes 
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W(LM) based on the described evolution mechanism. The stopping condition for the EA 
can be the maximum number of generations or it can be stopped when no better solution 
is obtained after a few successive generations. The weight values obtained by EA1, 
denoted by W(NE1) in Equation 4.41, represent the weights of the neuroevolutionary 
block 1. In other words, the weights of W(NE1) are loaded into the MLP structure of this 
block. At this stage, the training phase of the neuroevolutionary block 1 is terminated. 
Then, W(NE1) is passed to the neuroevolutionary block 2 to begin its training process. 
The BFGS learning algorithm of this block begins from the weight values of W(NE1) and 
its obtained solution, denoted by W(BFGS), is given to EA2 for further optimization. 
Similarly, the weight values obtained by EA2, that is, W(NE2), indicate the weights of the 
neuroevolutionary block 2 and are loaded into its MLP structure. W(NE2) is also given 
as initial values to the BR learning algorithm of the neuroevolutionary block 3. In the 
same way, the weight values obtained by the BR, that is, W(BR), are given to EA3 and its 
obtained solution W(NE3) represents the weight vector for the MLP structure of the 
neuroevolutionary block 3.

When all neuroevolutionary blocks of the HNES are trained, its training process is 
terminated and it is ready for forecasting the future values of the electricity price signal. 
Multiperiod price forecast of the HNES is obtained by means of iterative  forecasting, 
described for the HNN in the previous section, to decrease the  cumulative error.

Sample price prediction results for the forecast engines presented in this section are 
shown in Tables 4.6 and 4.7. The same test weeks as in Tables 4.1 through 4.4 are also 
considered in this numerical experiment. Also, the MAPE and VAR values reported in 
Tables 4.6 and 4.7 are as defined in Equations 4.25 and 4.28, respectively. For the sake of 
a fair comparison, all price forecast engines of Tables 4.6 and 4.7 have the same

• Nonhybrid data model of Equation 4.1.
• Linear transformation of Equation 4.5 with [a,b] = [0,1] and its inverse transform 

Equation 4.6 as the preprocess (normalization) and postprocess blocks, respec-
tively (Figure 4.2).

• Two-stage mutual information as the feature selection technique.
• Line search procedure for the fine tuning of the settings (this procedure will be 

introduced in Section 4.5.2).

Moreover, the historical data of 50 days prior to each forecast day, including 
50 × 24 = 1200 h samples, are used for the setup of each forecast strategy of this numeri-
cal experiment.

TABLE 4.6 MAPE Values (%) Obtained by Different Forecast Engines for Day-Ahead Price 
Forecast of the Four Test Weeks of the PJM Electricity Market in 2010

Test Week ARMAX RBF MLP + BR MLP + BFGS MLP + LM CNN HNN HNES

Winter 9.48 7.69 7.24 7.11 6.42 5.61 4.82 4.77
Spring 8.82 6.93 6.85 6.97 6.14 5.75 5.12 5.28
Summer 9.31 7.79 7.83 7.86 6.85 6.21 5.67 5.38
Fall 9.76 7.95 7.79 7.69 6.67 5.52 4.91 4.59
Average 9.34 7.59 7.43 7.41 6.52 5.77 5.13 5.01
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Tables 4.6 and 4.7 show that the multivariate ARMA or ARMAX has the poorest 
results among all forecast engines of these tables in terms of both price prediction accu-
racy and stability. This is due to the fact that ARMAX is a linear forecast model, whereas 
electricity price is a nonlinear mapping function of its input variables. The nonlinear 
price forecast methods of neural networks including RBF, MLP trained by BR 
(MLP + BR), MLP trained by BFGS (MLP + BFGS), and MLP trained by LM (ML + PLM) 
lead to lower MAPE and VAR values. Among these neural network approaches, 
MLP + LM leads to better price forecast results due to greater effectiveness of this learn-
ing algorithm.

For day-ahead hourly electricity price forecasting of this numerical experiment, the 
CNN includes 24 cascaded forecasters such that each forecaster is an MLP + LM. The 
CNN, based on its hourly partitioning mechanism, can better model the daily periodic-
ity characteristic of the hourly price signal and benefit from more specific training pro-
cesses for its forecasters. Observe from Tables 4.6 and 4.7 that the CNN has better price 
forecast accuracy and stability than the single time-series and neural network 
approaches. It is noted that the training time of the CNN is not 24 times more than a 
single MLP + LM. Although the CNN has 24 MLP + LM neural networks, each one of 
them is trained by 1/NH = 1/24 of the whole training samples. In other words, each 
neural network of the CNN should learn 1/24 × 1200 = 50 training samples (less train-
ing samples, but more specific ones, for each neural network). Thus, the increase in the 
training time of the CNN with respect to a single MLP + LM is much lower than 24 
times (in this numerical experiment, it is about two times).

From Tables 4.6 and 4.7, it can be seen that the HNN has better MAPE and VAR 
values than the previous forecast engines. Although BFGS and BR may result in slightly 
less price forecast accuracy than LM for a single MLP, by combining the learning abil-
ity of its neural networks the HNN can reach a higher level of learning capability, 
which is a key issue for modeling the complex forecast process of the electricity price 
signal. The solution space for the optimization problem of MLP neural network train-
ing can be considered as a vector space, where its dimensions are the weights of the 
neural network. A learning algorithm for the MLP in this vector space can be taken 
into account as a search mechanism that searches for a point with minimum error 
function value. Now, if a search mechanism is saturated, another one may still be able 
to proceed, especially when it is equipped with a more efficient initial point. Moreover, 
transferring price forecast results from the auxiliary predictor to the first MLP of the 
HNN and between its neural networks is another important issue for the enhanced 

TABLE 4.7 VAR Values (×10−4) Obtained by Different Forecast Engines for Day-Ahead Price 
Forecast of the Four Test Weeks of the PJM Electricity Market in 2010

Test Week ARMAX RBF MLP + BR MLP + BFGS MLP + LM CNN HNN HNES

Winter 36.43 33.74 34.21 32.13 32.12 30.18 26.81 27.29
Spring 36.88 34.88 34.93 32.78 31.73 31.28 26.79 26.05
Summer 37.32 34.83 34.17 33.82 31.52 30.53 27.12 26.07
Fall 38.07 34.78 34.64 33.77 32.19 31.59 28.81 27.45
Average 37.17 34.56 34.49 33.12 31.89 30.89 27.38 26.71
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price prediction performance of the HNN. If an MLP neural network has an initial 
forecast following the trend of the target signal, it can easier learn the behavior of the 
signal [47]. In this case, the MLP must learn the difference between the two trajectories 
instead of the global values of the target trajectory. In the HNN, each MLP neural net-
work has such an initial forecast. Moreover, the accuracy of this initial forecast increases 
from the first neural network to the last one.

Finally, the HNES overall has the best price prediction performance in terms of both 
price forecast accuracy and stability among all forecast engines of Tables 4.6 and 4.7. The 
average MAPE and VAR values of the HNES are lower than those of all other methods, 
illustrated in the last rows of Tables 4.6 and 4.7, respectively. Adding the local search 
ability of the EA parts to the HNES further enhances its learning capability with respect 
to the HNN.

4.5  Fine-Tuning of the Adjustable Parameters

In the previous sections, it has been seen that both the feature selection methods and 
forecast engines have adjustable parameters and their efficiency is dependent on the 
fine-tuning of these parameters. Moreover, the effectiveness of the training process of a 
neural network-based forecast engine for electricity price prediction is usually depen-
dent on its termination mechanism. Premature termination can result in the incomplete 
learning of the neural network. On the other hand, a large number of training iterations 
may lead to the overfitting problem. In this section, efficient solution methods for these 
two problems (the fine-tuning of the adjustable parameters and effectively terminating 
the training process of the neural network) are presented.

4.5.1  Cross-Validation Techniques

To present cross-validation techniques, the error function of a neural network should be 
first introduced. The classical choice for the error function of a neural network is the 
error of the training samples or training error. However, only minimizing the training 
error of a neural network in the training phase may lead to the overfitting problem in 
which the neural network begins to memorize the training samples instead of learning 
them. When overfitting occurs in a neural network, the training error continues to 
decrease and it seems that the training process progresses, whereas in fact the general-
ization capability of the neural network degrades and loses its prediction capability for 
unseen forecast samples (generalization is a measure of how well the neural network 
performs on the actual problem once training is complete [48]). For electricity price 
prediction, in which price is a time-variant signal and its functional relationships vary 
with time, the problem becomes more serious. Although it seems that the neural  network 
learns the training data well, it may encounter large prediction errors in the prediction 
phase.

To remedy this problem, the generalization performance of the neural network should 
also be monitored along its training phase. In other words, to have a correct measure of 
the price prediction capability of the forecast method, its error for the unseen part of the 
signal should be evaluated. However, as forecast error is not available in the training 
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phase, validation error is used as an approximation of it. For neural network learning, 
validation samples are a subset of the training set that is not used for the training of the 
neural network (optimization of its weights) and retained unseen for the neural net-
work. Thus, the error of validation samples or validation error can give an estimate of 
the neural network error for unseen forecast samples (e.g., electricity price values of 24 h 
ahead). Compared with the training error, validation error can better measure general-
ization capability of a neural network and avoid the overfitting problem [48].

Cross-validation techniques monitor the validation error of the neural network, in 
addition to its training error, along the learning process. These techniques can solve the 
two problems mentioned at the beginning of this section for neural network-based fore-
cast engines.

After constructing the training set (including, for instance, the 1200-h samples of the 
50 days prior to the forecast day), it is partitioned into the subset of training samples 
(used for the optimization of the neural network weights) and the subset of validation 
samples (retained unseen for the neural network). The learning algorithm trains the 
neural network to minimize the error of the training samples or training error. After 
each training iteration, both the training error and the validation error of the neural 
network are evaluated. For instance, training and validation errors of an MLP neural 
network for electricity price forecasting can be measured in terms of MAPE and AMAPE 
defined in Equations 4.25 and 4.26, respectively. To measure training/validation error 
by means of MAPE or AMAPE, NH should be the number of hours in the training/vali-
dation period (i.e., the number of training/validation samples) instead of the number of 
hours in the test period. Moreover, P t( ) and P t( ) should be the actual and predicted 
values of electricity price, respectively, for hour t of the training/validation period.

Usually, the validation error of a neural network decreases during the initial itera-
tions of the training phase, as does the training error. However, when the validation 
error starts to increase, the generalization performance of the neural network begins to 
degrade, indicating the occurrence of the overfitting problem. Thus, the training pro-
cess of the neural network should be terminated at that iteration. This termination 
mechanism is also known as the early stopping condition [49]. In other words, the train-
ing iteration owning the lowest validation error brings the final results (the weight val-
ues) of the neural network training, wherein it is expected that the generalization 
capability of the neural network is maximized (its forecast error is minimized). In this 
way, cross-validation techniques, based on the validation error and early stopping con-
dition, can effectively terminate the training process of the neural network, and thus the 
second problem is solved.

To better illustrate this matter, sample results of leave-one-out (LOO) cross- validation 
are shown in Figure 4.15 (this cross-validation method will be introduced in the subse-
quent paragraphs). The results shown in this figure are obtained for the day-ahead price 
forecast of the PJM electricity market for a forecast day of the summer test week of 
Tables 4.1 through 4.4 (August 20, 2010). It can be seen that the training error (heavy 
gray curve) continuously decreases. However, the validation error decreases up to a 
point (training iteration 12) and after that it increases due to the overfitting effect. Thus, 
this training process should be terminated in training iteration 12 with the lowest value 
of the validation error MAPE (0.0761% or 7.61%). Moreover, it is observed that the trend 



4-44 Electric Power Systems

of the test error or forecast error (light gray curve) is similar to the trend of the valida-
tion error curve such that after training iteration 12, the test error approximately begins 
to increase. This observation confirms that training iteration 12 is also the best termina-
tion point for the learning algorithm based on the test error.

To solve the first problem, the cross-validation technique is executed by different sets 
of adjustable parameters. More accurately, by different sets of the adjustable parameters, 
the feature selection process and the training process of the neural network based fore-
cast engine are carried out. Each time, the training process is terminated according to 
the early stopping condition. In other words, each execution of the cross-validation 
technique results in a training error curve and validation error curve (like the heavy 
gray and black curves in Figure 4.15, respectively) and the validation error obtained 
(e.g., MAPE = 0.0761 in Figure 4.15) is recorded. These results are denoted by the perfor-
mance indices in Figure 4.2. The set of adjustable parameters leading to the minimum 
value of the validation errors recorded among the executions of the cross-validation 
technique is selected. We expect that these values of adjustable parameters also lead to 
the minimum test error based on the available data.

The only remaining part of the cross-validation technique is selection of the subsets 
of validation samples and training samples among the training set. Two common 
approaches for this purpose are k-fold cross-validation and LOO cross-validation. In the 
k-fold cross-validation technique, we randomly divide the training set into k subsets. 
Using each subset as the validation samples, the setup process of the price forecast strat-
egy (including the execution of the feature selection phase and training process of the 
forecast engine) is carried out by the rest of the training set. The validation subset is 
retained unseen for the feature selection technique and forecast engine to simulate the 
situation of test samples. The performance of the forecast strategy is determined by the 
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FIGURE 4.15 Sample results for training error (heavy gray), validation error (black), and test 
error (light gray) obtained by the leave-one-out cross-validation for day-ahead price forecast of 
the PJM electricity market for a forecast day of the summer test week (August 20, 2010).
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average of the k validation errors. The combination of adjustable parameters leading to 
the best performance (the least value for the average of the k validation errors) is selected. 
For instance, the application of a tenfold cross-validation technique in electricity price 
spike prediction [4] and mid-term load forecast [50] has been presented in the 
literature.

In the LOO cross-validation technique, one subset of the training set is used as the 
validation samples and the remaining part of the training set is used for the setup of the 
price prediction strategy. For instance, for day-ahead price forecasting, the hourly sam-
ples of 1 day of the training period (e.g., 1 day out of the 50 days) are retained as the vali-
dation samples and the hourly samples of the remaining days (e.g., 49 days out of the 50 
days) are used for the feature selection and training process of the forecast engine. As 
LOO cross-validation only uses one validation subset, its validation samples should be 
as similar as possible to the forecast samples so that the validation error can give a rea-
sonable estimate of the prediction error. Considering the daily periodicity characteristic 
of the electricity price signal (described in Section 4.3.1.1), the hourly samples related to 
the day before the forecast day can be a suitable choice for the validation subset. However, 
other choices such as the hourly samples of the same day in the previous week (based on 
the weekly periodicity characteristic) may also be considered as the validation subset. 
Both the early stopping condition and the fine-tuning of adjustable parameters are 
implemented based on the single validation subset.

Numerical results obtained by fourfold cross-validation (k = 4), tenfold cross- 
validation (k = 10), and LOO for the four test weeks of Tables 4.1 through 4.4 are shown 
in Tables 4.8 and 4.9. The MAPE and VAR values reported in Tables 4.6 and 4.7 are as 
defined in Equations 4.25 and 4.28, respectively. All cross-validation methods of 
Tables 4.8 and 4.9 have:

• The nonhybrid data model of Equation 4.1.
• The linear transformation of Equation 4.5 with [a,b] = [0,1] and its inverse trans-

form Equation 4.6 as the preprocess (normalization) and postprocess blocks, 
respectively.

• Two-stage mutual information as the feature selection technique.
• HNES as the forecast engine.
• The historical data of 50 days prior to each forecast day including 50 × 24 = 1200 h 

samples as the training set.

TABLE 4.8 MAPE Values (%) Obtained by Different Cross-
Validation Techniques for Day-Ahead Price Forecast of the Four 
Test Weeks of the PJM Electricity Market in 2010

Test Week LOO Fourfold Tenfold

Winter 4.67 4.61 4.41
Spring 5.24 5.21 4.88
Summer 5.57 5.14 5.13
Fall 4.78 4.48 4.31
Average 5.07 4.86 4.68
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Tables 4.8 and 4.9 show that the MAPE and VAR values obtained by the fourfold and 
tenfold cross-validation methods are slightly lower than those obtained by the LOO 
cross-validation technique. The fourfold and tenfold cross-validations can more accu-
rately evaluate the effectiveness of each combination of adjustable parameters based on 
more validation subsets compared with the LOO cross-validation. Similarly, the tenfold 
cross-validation leads to slightly better MAPE and VAR results than the fourfold cross-
validation. However, the computation burden of the tenfold and fourfold cross- 
validations (especially the tenfold cross-validation) is much more than that of the LOO 
cross-validation. It can roughly be said that the computation effort required for a k-fold 
cross-validation technique is k times more than that required for an LOO cross-valida-
tion method. Thus, considering computation time limits for short-term price forecasting 
applications, LOO cross-validation might become the preferable choice.

4.5.2  Search Procedures

Search procedures are a more systematic approach for fine-tuning adjustable parameters 
than cross-validation techniques. Suppose that (SP1, . . ., SPNS) represent the set points or 
adjustable parameters of the electricity price forecast strategy, by the number of NS, 
including those of the feature selection technique and forecast engine. For instance, the 
price forecast strategy used in the previous numerical experiment includes two set 
points for the feature selection part (the thresholds TH1 and TH2 for the two-stage 
mutual information) and at least one set point for the HNES forecast engine (the num-
ber of nodes in the single hidden layer of the MLP neural networks of the HNES). Thus, 
NS for this electricity price forecast strategy becomes 3. Cross-validation techniques 
randomly change these set points within their allowable ranges (obtained from the engi-
neering judgment) until the combination of adjustable parameters leading to the best 
performance (the minimum validation error) is found. Variation steps for these param-
eters can be selected based on the allowable computation time. Smaller variation steps 
results in higher resolutions of the search process of the cross-validation technique and 
finding the appropriate values of the adjustable parameters with more accuracy. At the 
same time, the computation burden will increase. For instance, the thresholds TH1 and 
TH2 for the normalized mutual information (normalized with respect to their maxi-
mum values [2]) may be varied in the range of [0.3,0.8] and the allowable range for the 
number of nodes in the single hidden layer of the MLP neural networks of the HNES 

TABLE 4.9 VAR Values (×10−4) Obtained by Different Cross-
Validation Techniques for Day-Ahead Price Forecast of the Four 
Test Weeks of the PJM Electricity Market in 2010

Test Week LOO Fourfold Tenfold

Winter 27.42 26.65 26.00
Spring 26.41 26.01 25.42
Summer 26.32 25.74 25.48
Fall 27.90 26.38 26.21
Average 27.01 26.19 25.78
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may be [10,30]. If the variation step for TH1 and TH2 is selected as 0.1 and for the num-
ber of nodes of the hidden layer as 2, the solution space of the optimization problem will 
have 6 × 6 × 11 = 396 points. By making these variation steps smaller/larger a more 
dense/coarse grid can be constructed. The cross-validation technique examines some of 
these points (or all of them) on the basis of the permissible computation time and the 
best found combination of adjustable parameters is selected.

Despite cross-validation techniques, search procedures do not change the adjustable 
parameters simultaneously. These procedures divide the adjustable parameters into sub-
sets. Each time, the parameters of only one subset are changed, whereas the parameters of 
the other subsets are kept constant. After finding the appropriate values for the set points 
of one subset, the next subset is processed. In this way, we can better control the variation 
of the parameters. The simplest form of the search procedure is line search in which only 
one parameter is changed each time. In other words, we search along one dimension of the 
solution space (or along a line) each time. After fine-tuning all adjustable parameters one 
by one, a cycle of the line search procedure is terminated. Then, the next cycle begins with 
the values obtained in the previous cycle. Only the first cycle begins with the randomly 
chosen values for the adjustable parameters within their allowable ranges. When the max-
imum number of cycles is reached or when there is no change between the values of adjust-
able parameters in two successive cycles, the line search procedure can be terminated. 
More details about the search procedures can be found in Reference [2].

It is noted that the search procedures can be implemented on the basis of the LOO or 
k-fold mechanisms like the cross-validation techniques. Indeed, these procedures have 
different search mechanisms with respect to cross-validation methods.

Results obtained by the line search procedure with the LOO mechanism for the 
numerical experiment described in Tables 4.8 and 4.9 are reported in Tables 4.10 and 
4.11, respectively, and are compared with the results obtained by the LOO cross- 
validation method. From Tables 4.10 and 4.11, it can be observed that the line search 
procedure leads to slightly more accurate and more stable price forecast results than the 
LOO cross-validation technique, whereas their computation times for this numerical 
experiment are approximately the same. This is due to a more effective search mecha-
nism of the line search procedure.

Up to now, all components of an artificial intelligence-based electricity price forecast 
strategy, shown in Figure 4.2, have been introduced. To also give a graphical view about 

TABLE 4.10 MAPE Values (%) Obtained by the Line Search Procedure and 
Cross-Validation Technique, Both with the Leave-One-Out (LOO) Mechanism, 
for Day-Ahead Price Forecast of the Four Test Weeks of the PJM Electricity 
Market in 2010

Test Week Line Search Procedure LOO Cross-Validation

Winter 4.77 4.67
Spring 5.28 5.24
Summer 5.38 5.57
Fall 4.59 4.78
Average 5.01 5.07
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the overall effectiveness of the presented components, the electricity price prediction 
results of the forecast strategy are shown in Figures 4.16 through 4.19 for the four test 
weeks, respectively. The forecast strategy has the same data model, preprocess and post-
process blocks, feature selection technique, forecast engine and training set of the previ-
ous numerical experiment. Moreover, it has early stopping condition as the termination 
mechanism for the training process of the neural networks of the HNES (forecast 
engine) and line search procedure for fine-tuning adjustable parameters, on the basis of 
the LOO mechanism. From Figures 4.16 through 4.19, volatile behavior and irregular 
patterns of the electricity price signal can be observed. Despite this, the forecasts gener-
ated using artificial intelligence, data mining, and optimization techniques present good 
accuracy with reasonable computation burden. In all figures, the forecast curve accu-
rately follows the actual curve and the error curve overall has small values.

TABLE 4.11 VAR Values (×10-4) Obtained by the Line Search Procedure and 
Cross-Validation Technique, Both with the Leave-One-Out (LOO) Mechanism, 
for Day-Ahead Price Forecast of the Four Test Weeks of the PJM Electricity Market 
in 2010

Test Week Line Search Procedure LOO Cross-Validation

Winter 27.29 27.42
Spring 26.05 26.41
Summer 26.07 26.32
Fall 27.45 27.90
Average 26.71 27.01
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FIGURE 4.16 Results obtained by the artificial intelligence-based electricity price forecast 
strategy for day-ahead price forecast of the winter test week of the PJM electricity market.
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4.6  Price Spike Forecast

Price spikes are a distinctive characteristic of the electricity price signal. Electricity price 
spikes are important for market participants. For instance, they can bring serious 
 economic damages to customers. In Section 4.1, a discussion about some effective fac-
tors on the generation of price spikes has been presented. In this section, at first, the 
concept of electricity price spike is more accurately introduced. Then, two key forecast 
processes of price spikes, including price spike occurrence prediction and price spike 
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FIGURE 4.17 Results obtained by the artificial intelligence-based electricity price forecast 
strategy for day-ahead price forecast of the spring test week of the PJM electricity market.
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FIGURE 4.18 Results obtained by the artificial intelligence-based electricity price forecast 
strategy for day-ahead price forecast of the summer test week of the PJM electricity market.
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value prediction, are discussed and solution methods for these two forecast processes 
are presented.

4.6.1  What is a Price Spike?

A price spike can be generally defined as an abnormal price value, which has significant 
difference with respect to the expected value of the signal. On the basis of this definition, 
price spikes may be classified into three categories [51,52]:

 1. Abnormal high price: A price that is significantly higher than its expected value.
 2. Abnormal jump price: If the absolute value of difference between electricity price 

values in two successive time intervals is greater than a jump threshold JTH, that 
is, we have

 
P t P t( ) ( )− − >1 JTH

 
(4.42)

  then P(t) is defined as a price spike of abnormal jump price type.
 3. Negative price: A price value lower than zero is defined as a negative price.

An abnormal high price is the most common form of electricity price spikes [52]. 
Moreover, most research in the area of price spike forecasting focuses on the abnormal 
high price-type price spikes [4,51–54]. Thus, hereafter, we also focus on this type of 
price spike. To analyze these price spikes, at first, we must determine how high the 
prices should be in order to be considered as spikes. In other words, a price spike 
threshold should be chosen to discriminate price spikes from normal prices. Here, 
nonspike prices are considered as normal prices. The threshold of μp + 2σp has been 
proposed for this purpose [51–53], where μp and σp indicate mean and standard devia-
tion of historical market prices, respectively. On the basis of this criterion, different 
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FIGURE 4.19 Results obtained by the artificial intelligence-based electricity price forecast 
strategy for day-ahead price forecast of the fall test week of the PJM electricity market.
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price spike thresholds can be inferred for different electricity markets. In Figure 4.1, 
two price spike thresholds of 150 and 200 $/MWh, proposed by Amjady and Keynia 
[4,54] for the price time series of the PJM electricity market, are shown. A discussion 
about selection of price spike thresholds can be found in References [4,9]. After select-
ing the threshold, historical data for price spikes can be collected. Thus, the setup 
process of the price spike forecaster can be executed by the collected data. For price 
spike forecasting, both price spike occurrence and value should be predicted. 
Prediction methods for these two forecast processes will be presented in the next two 
sections.

4.6.2  Prediction of Price Spike Occurrence

The artificial intelligence-based electricity price forecast strategy shown in Figure 4.2 
can also be used for price spike occurrence prediction. However, it should be noted that 
the target variable P(t) for each time interval t is a continuous real-valued variable. On 
the other hand, the forecast process of price spike occurrence prediction is a binary clas-
sification task wherein the output feature is a binary-valued variable indicating whether 
or not a price spike in the corresponding time interval occurs.

The previously presented forecast engines are efficient estimators of continuous 
variables such as electricity price value. Although an estimator can also be used for 
classification tasks (e.g., by rounding its estimated output to the closest class label), it 
is better to use specifically designed classifiers for this purpose. For instance, a proba-
bilistic neural network (PNN) is an efficient classifier that can be used for price spike 
occurrence prediction. Details of the PNN classifier can be found in Reference [55]. 
An advantage of the PNN is its rapid training, as the learning phase of the PNN is 
done in one pass of each training sample rather than in several of them.

In addition to using a classifier as the forecasting engine, it is recommended that a 
hybrid data model including both time- and frequency-domain candidate features, such 
as the data model shown in Equation 4.4, is used for price spike occurrence prediction. 
A price spike contains sudden changes in the time domain or equivalently high- 
frequency components in the frequency domain. Thus, frequency domain candidate 
inputs can contain important information for price spike occurrence prediction. 
Moreover, as price spikes usually constitute a small portion of the whole electricity price 
time series (which can be seen, for instance, from Figure 4.1), calendar indicators may 
also include useful information to enhance the discrimination capability of a classifier 
to predict price spike occurrence. For instance, seasonal, daily, and hourly calendar 
indicators can be added to the hybrid data model encoding 4 seasons of a year, 7 days of 
a week (public holidays may be treated like weekends), and 24 h of a day, respectively.

Another useful candidate input for price spike occurrence prediction is the existence 
feature. It is a binary variable for each time interval t indicating whether or not a price 
spike occurs in 24 h before t. Zhao et al. [51] have discussed how spikes tend to occur 
together over a short period of time and this period can be several hours but no longer 
than a day. From Figure 4.1 too it can be seen that price spikes are usually close to each 
other. However, a binary existence variable cannot bring whole related information 
about consecutive price spikes. For instance, the probability of spike occurrence reduces 



4-52 Electric Power Systems

when the closest price spike becomes farther. Hence, the existence candidate input has 
been improved in the study by Amjady and Keynia [4] as follows:

Existence
if the closest price spike occurs at such that

( )t
k t k k

=
− ≤1 ≤≤

− −

⎧
⎨
⎪

⎩⎪

24
25 24 1if no price spike occurs in the period [ , ]t t

 
(4.43)

In this way, the existence feature can also measure the distance with the closest price 
spike.

On the basis of the above explanations, a price spike occurrence prediction strategy 
can be constructed as follows:

• The hybrid data model of Equation 4.4 plus the seasonal, daily, and hourly calen-
dar indicators and the existence feature defined in Equation 4.43.

• The linear transformation of Equation 4.5 with [a,b] = [0,1] and its inverse trans-
form Equation 4.6 as the preprocess (normalization) and postprocess blocks, 
respectively.

• Two-stage mutual information as the feature selection technique.
• PNN as the forecast engine.
• The historical data of 1 year prior to each forecast day including 365 × 24 = 8760 h 

samples as the training set.
• A search procedure or cross-validation technique for fine-tuning adjustable 

parameters.

Results obtained from this prediction strategy for price spike occurrence forecasting 
of day-ahead electricity market of PJM in 2006 have been presented by Amjady and 
Keynia [4] and compared with the results of some other price spike occurrence predic-
tion strategies. Despite the previous numerical experiments in this chapter (reported in 
Tables 4.1 through 4.4 and 4.6 through 4.11) that consider four specific test weeks, the 
whole price data of the PJM electricity market in 2006 have been considered in the 
study by Amjady and Keynia [4], as mentioned. This is due to the fact that a large num-
ber of test samples (4 × 168 = 792) can be generated for price forecast by considering 
four test weeks. However, only a small number of price spikes may be found in four test 
weeks and so the price spike prediction performance of the forecast strategy may not be 
correctly evaluated by the price data of four test weeks. Similarly, the historical data of 
1 year prior to each forecast day has been considered as the training set here (instead of 
50 days prior to each forecast day) to have a sufficient number of price spikes among the 
training samples.

The price spike occurrence prediction results in the study by Amjady and Keynia [4] 
have been presented for two electricity price spike thresholds of 150 and 200 $/MWh, 
indicated in Figure 4.1. In the day-ahead electricity market of PJM in 2006, the number 
of price spikes with a threshold of 150 $/MWh, that is, 73, is more than the number of 
price spikes with a threshold of 200 $/MWh, that is, 25. This can also be observed in 
Figure 4.1.

A well-known criterion for evaluating the performance of classifiers is classification 
accuracy defined as follows:
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Classifier accuracy (%) = 

Number of correctly classified tesst samples
Number of test samples × 100

 
(4.44)

However, for price spike occurrence prediction, this criterion usually is not informative 
because the data of the problem are seriously imbalanced [51]. For instance, for the day-
ahead electricity market of PJM in 2006, 73/8760 = 0.83% and 25/8760 = 0.29% out of all 
test samples are price spikes with the two price spike thresholds of 150 and 200 $/MWh, 
respectively. Thus, even if the price spike occurrence prediction strategy misclassifies all 
price spikes as normal prices, high classification accuracies of 99.17% and 99.71% can still 
be obtained for the thresholds of 150 and 200 $/MWh, respectively. Thus, new criteria are 
required to correctly evaluate price spike occurrence prediction performance of a fore-
cast strategy. Two criteria are defined for this purpose by Zhao et al. [51,53]:

Spike prediction accuracy (%) = Number of correctly predictted spikes
Number of spikes × 100

 
(4.45)

 
Spike prediction confidence (%) = Number of correctly prediicted spikes

Number of predicted spikes × 100
 

(4.46)

Spike prediction accuracy measures the ability to correctly predict spikes. At the 
same time, the classifier may misclassify some normal prices as price spikes. The spike 
prediction confidence can measure these errors of the price spike occurrence prediction 
strategy. The number of correctly predicted price spikes, the number of incorrect predic-
tions (normal prices predicted as price spikes), spike prediction accuracy, and spike pre-
diction confidence for the day-ahead electricity market of PJM in 2006 with the two 
price spike thresholds of 150 and 200 $/MWh are shown in Table 4.12. These results 
have been obtained by the price spike occurrence forecasting strategy of Amjady and 
Keynia [4] outlined above.

For instance, for the price spike threshold of 150 $/MWh, the spike prediction accu-
racy of the strategy becomes 71/73 = 97.3% and its spike prediction confidence becomes 
71/(71 + 10) = 87.7%. It is seen that despite high volatility of price spikes, both reason-
able accuracy and confidence can be obtained for price spike occurrence prediction by 
using appropriately designed forecast strategies. From Table 4.12, it can also be observed 
that better price spike occurrence prediction accuracy and confidence are obtained for 
the price spike threshold of 150 $/MWh compared with the threshold of 200 $/MWh. 

TABLE 4.12 Results Obtained for Price Spike Occurrence Prediction of the Day-Ahead 
Electricity Market of PJM in 2006 with Two Price Spike Thresholds of 150 and 200 $/MWh
Price spike threshold 150 200
Number of spikes 73 25
Number of correct predictions 71 23
Number of incorrect predictions 10 3
Spike prediction accuracy (%) 97.3 92.0
Spike prediction confidence (%) 87.7 88.5
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More spikes can be found with the lower price spike threshold of 150 $/MWh. Thus, the 
feature selection process and the forecast engine’s training process can be carried out 
more effectively with more spiky training samples.

4.6.3  Prediction of Price Spike Value

The prediction of price spike value in addition to price spike occurrence can produce a 
more informative forecast for price spike. After discriminating normal prices from price 
spikes by means of the price spike occurrence predictor, two estimators can be specifi-
cally trained to forecast price spike values and normal price values; thus, their training 
efficiency enhances compared with a single estimator that should learn the behaviors of 
both price spikes and normal prices. In other words, a complex forecast process is 
decomposed to two more specific ones, which can be implemented more effectively.

Results obtained from such a prediction strategy for price spike value prediction and 
normal price value prediction of the day-ahead electricity market of PJM in 2008 have been 
presented by Amjady and Keynia [54]. The price spike occurrence prediction is as described 
in the previous section and its two estimators (used for price spike value prediction and 
normal price value prediction) are as described in Section 4.5.2 to generate the forecast 
results of Figures 4.16 through 4.19. Moreover, a closed-loop  prediction mechanism is also 
proposed by Amjady and Keynia [54] to combine the classifier and the two estimators with 
the aim of generating consistent forecasts for price spike occurrence, price spike value, and 
normal price value. In other words, when the price spike occurrence predictor forecasts the 
status of the electricity price for a future time interval as spike/normal (and so the corre-
sponding estimator is activated), the forecast generated for the price value should be 
greater/smaller than the price spike threshold. The conventional open-loop forecast meth-
odologies cannot guarantee this consistency and may generate inconsistent predictions for 
price spike occurrence and value, as these forecast methods have no feedback from their 
outputs (generated predictions). On the other hand, the closed-loop prediction strategy, 
using the concept of closed-loop control systems, can remedy this problem.

In engineering applications, closed-loop control systems, based on the feedback from 
the output, can change their inputs to modify their outputs, a characteristic that is not 
seen in the open-loop control systems. Similarly, the closed-loop prediction strategy 
takes the feedback from the output. If the prediction generated for price spike  occurrence 
and the forecast produced for the value of price spike/normal price are inconsistent, the 
inputs of the price spike occurrence predictor are changed accordingly on the basis of 
the price value prediction by the activated estimator. In this way, the price spike occur-
rence predictor can modify its output on the basis of the closed-loop operation. This 
cycle is continued until consistently more accurate forecasts for price spike occurrence, 
price spike value, and normal price value are obtained. More details about the  closed-loop 
price spike prediction strategy can be found in Reference [54].

4.7  Conclusions

The electricity price signal is a nonlinear time-variant mapping function of many input 
variables. Its time series usually represents volatile behavior in the form of sudden 
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changes, irregular patterns, outliers, and even price spikes. To predict the future 
behavior of this signal, a qualified data model should be first constructed including the 
possible price drivers as much as possible. In addition to time-domain features, 
 frequency-domain candidate inputs may also be considered to further enrich the data 
model. The constructed data model should be refined by means of data mining tech-
niques and information theoretic criteria to select a minimum subset of the most infor-
mative features for the forecast engine. The prediction method should be able to extract 
the mapping function between the selected inputs and the target variable. Learning 
capability of the forecast engine is a key issue in this regard. As much as a more informa-
tive set of inputs is selected and the forecast engine can better learn the impact of the 
selected inputs on the target variable, the price prediction performance of the forecast 
strategy enhances.

Feature selection methods and forecast engines usually have a few adjustable 
 parameters and their performance is dependent on fine-tuning these settings. These 
parameters nonlinearly affect the performance of the forecast strategy and may inter-
act with each other. Thus, selecting appropriate values for the settings is a hard task 
for  the user and automatically fine-tuning these parameters is required. Designing 
effective cross-validation techniques and search procedures that can optimize the 
 values of adjustable parameters with a reasonable computation burden is another 
important issue for the efficiency of the price forecast strategy. It is noted that an 
 effective prediction strategy should be able to produce both accurate and stable price 
forecasts.

Prediction of price spikes, which have more volatility than normal prices, is a more 
complex forecast process. For price spike forecasting, we should predict both price spike 
occurrence and value. Moreover, these predictions should be consistent. Combining 
classifiers with estimators and using closed prediction mechanisms can present poten-
tial solutions for these requirements.
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5.1  Introduction

To optimize the scheduling of grid components, such as the power plant types 
explained in the introduction to this book during the unit commitment process, 
information is needed on the future development. The expected load is a major con-
tributor to the unit commitment process, but load can be predicted quite well. In sys-
tems with sizeable penetrations of renewable energy, the uncertainty stemming from 
their production can easily be the largest uncertainty of the next-day profile. Not all 
renewable energy plants are equal in this respect: tidal power, for example, is very well 
predictable, biomass- or biogas-fired plants can even be scheduled, as the primary 
resource can easily be stored, and hydropower plants with storage dams are ideal to 
schedule as well. Hydropower plants on the other hand have issues on much longer 
timescales than the unit commitment time scale: for example, in Portugal, the vari-
ability of hydro resource on an annual basis is much larger than the variability of wind 
power, both averaged over the whole country [1]. Even solar power can be very well 
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predicted half of the day—at night, when photovoltaic and concentrated solar power 
plants without heat storage are not producing energy. For wind power and solar power 
during the day, the situation is not so easy.

5.1.1  Timescales

Let us first look at the timescales involved. For wind power, there are two timescales 
clearly outside the unit commitment or power system realm that are still drawing 
attention: the forecast a few seconds ahead allowing the control system to pitch the 
blades properly into the wind, and the wind resource for the next 20 years, needed for 
citing studies possibly including climate change effects. The former can lead to a 
higher aerodynamic efficiency of the turbine, but can reasonably only be achieved by 
measurements of the incoming wind field. As a ring of measurements around the 
wind turbine is prohibitively expensive, the only possibility for this is a  forward-looking 
lidar (light detection and ranging, essentially a laser beam being reflected and Doppler 
shifted on aerosols flying with the wind speed) or similar remote sensing instrument, 
mounted on the nacelle and being able to turn into the wind with the turbine [2,3]. The 
latter is a standard technique since at least the mid-1980s and is not within the realm 
of this book.

This leads to two timescales that are important for the power system (see also 
Chapter 1): unit commitment and scheduling, and the market timescale. The unit 
commitment timescale is usually given by the largest block in the system, often a large 
coal-fired power station needing 8–12 h from cold to produce the first power. The 
other timescale is the one that has in recent years received most attention, because it is 
where energy companies make money: the market timescale. In Europe, like in the 
case of NordPool for the Nordic countries or the German electricity exchanges, this 
mostly means next-day forecasting, to have a good forecast at 1100 h local time for the 
next full day, that is, a forecast with 13–37 h horizon. Whereas the market timescale is 
a relatively new phenomenon, only brought about through the deregulation process in 
the last decade or so, the scheduling problematic has been on the radar since the first 
paper on wind power forecasting by Brown et al. in 1984 [4]. In retrospect, it is sur-
prising how complete the paper already was, using a transformation to a Gaussian 
distribution of the wind speeds, forecasting with an autoregressive process, upscaling 
with the power law (but discussing the potential benefit of using the log law), and then 
predicting power using a measured power curve. Additionally, the removal of sea-
sonal and diurnal swings in the autoregressive components is discussed, alongside 
prediction intervals and probability forecasts. Noteworthy is also that their work was 
sponsored by Bonneville Power Administration, which much later entered the 
 forecasting business again as a sponsor, this time with a special emphasis on ramps 
prediction [5,6].

Forecasting more than a few days ahead can be important for scheduled maintenance 
on the power system, either to replace a conventional generator at a time when enough 
wind power is expected or to do maintenance on a power line in dependency of the load-
ing state. As this is not connected to the unit commitment problem, a larger discussion 
of the topic can be found in References [7,8].
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5.1.2  Wind Power Forecasting Methods

Although forecasting for the scheduling horizon is sometimes attempted without taking 
resort to numerical weather prediction (NWP) (i.e., the type of weather model outputs 
we see every evening in the news), for the next day it is paramount to take into account 
the predicted wind fields from NWP for the power conversion model. The first attempt 
at that was made by McCarthy [9] for the Central California wind resource area. It was 
run in the summers of 1985–1987 on an HP 41CX programmable calculator, using 
 meteorological observations and local upper air observations. The program was built 
around a climatological study of the site and had a forecast horizon of 24 h. It forecast 
daily average wind speeds with better skill than either persistence or climatology alone. 
However, this model required one to manually input the calculation data into the 
 calculator, and upscaling it to a whole nation would have been quite difficult. The father 
of the modern NWP-based forecast was Landberg [10,11], who developed a short-term 
prediction model, now known as Prediktor, based on physical reasoning similar to the 
Wind Atlas Analysis and Application Program (WAsP) methodology developed for the 
European Wind Atlas [12]. The idea is to use the wind speed and direction from an 
NWP, then transform this wind to the local site, then use the power curve, and finally 
modify this with the PARK efficiency. A model output statistics (MOS) module could 
calibrate the forecast using real measurements. Landberg used the Danish or Risø ver-
sion for all the parts in the model: the high-resolution local area model (HIRLAM) of 
the Danish Meteorological Institute (DMI) as NWP input, the WAsP model from Risø 
to convert the wind to local conditions, and the Risø PARK model to account for the 
lower output in a wind park due to wake effects. The site assessment regarding rough-
ness is done as input for WAsP. Either a roughness rose or a roughness map is needed. 
From this, WAsP determines an average roughness at hub height. Only one WAsP 
 correction matrix is used, which could be too little for a larger wind farm [13]. Prediktor 
was also used in the generic supervisory control and data acquisition (SCADA) system 
CleverFarm for maintenance scheduling [14].

Prediktor is mentioned here as an example for a physical model, which tries to 
establish a physical connection between the coarse NWP results and the actual 
 measurements. Another way to do it is with a statistical model, directly establishing a 
connection between the input data and the measurements. Most models currently in 
use involve a mix of both methods.

5.1.3  Typical Results

The reason why next-day forecasts are usually done with the use of NWP data is the 
far better accuracy those models achieve in comparison with time-series models. The 
verification of model performance is dependent on the error type. Models can be 
good at one particular error and bad at another. The typical behavior of the error 
function for models using time-series approaches or NWP is shown in Figure 5.1 for 
the case of Prediktor applied to an older Danish wind farm in the mid-1990s (the 
farm has been repowered since), using root mean square erros (RMSE) as the error 
measure.
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Figure 5.1 highlights a number of issues. Persistence is the model most frequently 
used to compare against the performance of a forecasting model. It is one of the sim-
plest prediction models, second only to predicting the mean value for all times (a cli-
matology prediction). In this model, the forecast for all times ahead is set to the value 
it has now. Hence, by definition, the error for zero time steps ahead is zero. For short 
 prediction horizons (e.g., a few minutes or hours), this model is the benchmark all 
other prediction models have to beat. This is because the dominant timescales of large 
synoptic scale changes in the atmosphere are in the order of days (at least in Europe, 
where the penetration of wind power is still the highest). It takes in the order of days 
for a low-pressure system to cross the continent. As the pressure systems are the driv-
ing force for the wind, the rest of the atmosphere undergoes periodicity on the same 
timescales. High-pressure systems can be more stationary, but these are typically not 
associated with high winds, and therefore not so important. Mesoscale features 
(fronts, low-pressure troughs, large thunderstorms, mesoscale cellular convection, 
gravity waves, etc.) operate on timescales of hours, and have reasonable predictability 
using mesoscale models. To predict much better than persistence for short horizons 
using the same input, that is, online measurements of the predictand, is only possible 
with some effort.

One can see that persistence beats the NWP-based model easily for short prediction 
horizons (ca. 3–6 h). However, for forecasting horizons beyond ca. 15 h, even forecasting 
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with the climatological mean (the dashed line) is better. This is not surprising, as it can 
be shown theoretically [15] that the mean square error of forecasting by mean value is 
half that of the mean square error of a completely decorrelated time-series with the same 
statistical properties (which is similar to persistence for very long horizons).

After about 4 h the quality of the “raw” NWP model output [marked HIRLAM/
WAsP/PARK (HWP), full squares] is better than persistence even without any postpro-
cessing. The quality of the New Reference Model [15] (essentially persistence with a 
trend toward the mean of the time-series) is reached after 5 h. The relatively small slope 
of the line is a sign of the relatively poor quality of the assessment of the initial state of 
the atmosphere by the NWP, but of the good quality of the predictive equations used in 
the model from that initial state. The first two points in the HWP line are fairly theoreti-
cal; owing to the data  assimilation and calculating time of HIRLAM (~4 h), these can-
not be used for practical applications and could be regarded as hindcasting. The 
improvement attained by using a simple linear MOS (the line marked HWP/MOS, the 
model now known as Prediktor, open squares) is quite pronounced.

One line of results is missing in Figure 5.1 (for reasons of sharper distinction between 
time-series analysis methods and NWP methods): a result for current statistical  methods 
using both NWP and online data as input. That line would of course be a horizon-
dependent weighting of the persistence and the HWP/MOS approach, being lower for all 
horizons than all the other lines. However, for short horizons, it cannot do (significantly) 
better than persistence, whereas for long horizons, the accuracy is limited by the NWP 
model. Therefore, the line would rise close to the persistence results, and continue stay-
ing close to the HWP/MOS line.

The behavior shown in Figure 5.1 is quite common across all kinds of short-term 
forecasting models and is not specific to Prediktor, although details can vary slightly, 
such as the values of the RMSE or the slope of the error quality with the horizon. Typical 
model results today are RMSEs around 10% of the installed capacity, though with large 
deviations between NWP input, forecasting model, and wind farm. Improvements over 
the graph shown here are mostly due to improvements in NWP models. Model-specific 
items are to be found in the next chapter.

Typical forecast accuracies for single wind farms can vary quite dramatically. For the 
EU ANEMOS project, a comparison of 11 state-of-the-art tools was made for 6 sites in 
Europe [16], which showed that the differences between the wind farms and also between 
the forecasting models are quite large.

Another way to classify the error has been shown by weather and wind energy prog-
nosis (WEPROG) [17–19]. In Figure 5.2 [20], two error sources are distinguished: the 
background error, which essentially is due to a suboptimal representation of the single 
point used for verification with the grid cell average calculated by the NWP (which is a 
general problem in meteorology), and a model error, where good initial data are becom-
ing successively worse with increasing horizon due to imperfectly captured or simplified 
atmospheric physics, or due to the amplification of small initial errors as a result of the 
chaotic nature of the atmosphere.

In Figures 5.1 and 5.2, there is no obvious wind speed dependency of the error. 
Actually, the wind speed error of an NWP model does not seem to depend much on the 
level of predicted wind speed, as Lange and Heinemann [21] show in the left graph of 
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Figure 5.3 for the Deutschlandmodell of the German Weather Service (Deutscher 
Wetterdienst, DWD). But the nonlinear power curve (central plot [22]) skews the distri-
bution significantly. Therefore, the distribution of errors per power bracket is nonuni-
formly distributed.

The complexity and importance of the problem on the wind side has resulted in many 
works, which have been collected and brought into the form of large reports on the state 
of the art. Especially the two by Giebel et al. [7] and Monteiro et al. [23] have to be men-
tioned here: Together, they reference over 400 papers in short-term prediction of wind 
power and try to be the normative references in the field. (Actually, this chapter relies 
heavily on text already written for Giebel et al. [7].)

Seeing such an effort being made by the institutes involved in wind power forecasting, 
it is satisfying to see that the hard work has borne fruit in terms of improvements of 
errors. The Institut für Solare Energieversorgungstechnik e.V. (ISET), Kassel, Germany 
(now the main part of the Fraunhofer Institut für Windenergie und Energiesystem-
technik, IWES) was the first short-term forecasting provider for transmission system 
operators (TSOs) in Germany. In a widely cited paper for the European Wind Energy 
Conference (EWEC) 2006, Lange et al. [24] presented the following plot for the accuracy 
of the next-day forecast in the E.On control zone. They stated that the main reasons for 
the improvement were: (i) taking into account the influence of atmospheric stability into 
the models which led to a reduction in forecast error (RMSE) by more than 20% for the 
example of one German TSO control zone; and (ii) a combination of different models, 
both for forecasting methods as well as for NWP models. The comparison of the mean 
RMSE of a wind power forecast for Germany obtained with the wind power management 
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system (WPMS) based on artificial neural networks (ANNs) with input data from three 
different NWP models and with a combination of these models showed a decrease in 
RMSE from approximately 6% to 4.7%.

Note that their competitor, energy & meteo systems GmbH, claims a forecasting 
RMSE of below 5% for the day-ahead forecast for all of Germany in 2008 [25], which by 
now the IWES has also achieved [26].

A similar plot, though constrained to the last 2 years, was shown by Krauss et al. [27] 
for the EnBW (Energie Baden-Württemberg AG) TSO area (see Figure 5.4). They showed 
the monthly accuracy of three different forecasting systems for the aggregate error and 
concluded that there are significant changes in forecast accuracy from month to month, 
and that the ranking of the three models changes from month to month as well.

When analyzing the error of a wind power forecasting model, the usual error crite-
rion is mean absolute error (MAE) or RMSE. Which one to choose usually depends on 
the cost function of the end user: if just the sum of imbalances is important, the MAE 
reflects this criterion well, whereas if there is a “deadband,” where small errors are 
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FIGURE 5.3 The error is nonlinearly distributed over the power brackets. The error is fairly 
linear at about 1 m/s for the shown model. However, folding this through the wind farm power 
curve introduces nonlinearities and increases the error in the rising part of the power curve, while 
decreasing it in the flatter parts. (From Lange, M., and Heinemann, D., Poster P_GWP091 on the 
Global Windpower Conference and Exhibition, Paris, France, April 2–5, 2002; Central plot: From 
Lange, M., and Focken, U., Physical Approach to Short-Term Wind Power Prediction, Springer-Verlag, 
Berlin, 2005. With permission.)
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 essentially irrelevant, but larger errors are penalized strongly, the stronger weighting of 
the outliers in the RMSE better represents the system at hand. The error as such can be 
classified as a value error or the so-called phase error, a timing error in the forecast. In 
recent years, the phase error is getting a larger importance for the total error, as the 
overall strength of a storm can often be well predicted.

There is a wealth of different forecasting criteria, and comparability of performance 
values in the literature was not easy. Therefore, it was one of the tasks of the ANEMOS 
project to establish a common set of performance measures with which to compare fore-
casts across systems and locations. These common error measures are the bias, MAE, 
RMSE, the coefficient of determination R2, the skill score for comparison with other 
models, and the error distribution as a histogram [28]. The project working group also 
emphasizes the need to split the dataset into separate training and validation sets, and 
proposes to use the normalized mean errors for a comparison across different wind 
farms. If there should be normalization (recommended), it should be with the installed 
capacity, not the mean production. The reason for this is the scalability for large regions 
in the case of additional wind farms: for the system operator, the installed capacity is 
easy to assess, whereas the mean production, especially for new wind farms, is hard to 
know with sufficient accuracy beforehand. An additional evaluation criterion is brought 
by the Spanish Wind Energy Association: the mean absolute percentage error (MAPE). 
This error type stems from the law that wind farm owners who want to participate in the 
electricity market have to predict their own power. Deviations from the declared sched-
ule are punished according to this error measurement.

Tambke et al. [29] presented the decomposition of RMSE into the three components: 
bias in mean wind speed, bias in standard deviation, and dispersion. This is quite useful 
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to determine whether the main contribution to the errors of the NWP model come from 
level errors or biases, or rather (if the dispersion term is large) from phase errors.

During the analysis of the error, it also becomes clear that most of the error is in the 
NWP. The main error in the final forecast comes from the meteorological input. For 
example, Sánchez et al. [30] show that the Spanish statistical tool Sipreolico, run with 
on-site wind speed input, has a much higher degree of explanation than HIRLAM fore-
casts (see Figure 5.5). This means that, given a representative wind speed, Sipreolico can 
predict the power quite well. It is the wind speed input from the NWP model that 
decreases the accuracy significantly. Therefore, it is logical to try to improve the NWP 
input in order to come up with significant improvement in forecasting accuracy.

5.2  Time-Series Models

The easiest to use and therefore also earliest models for the short-term prediction of 
wind power are time-series models, usually some variants of autoregressive models, 
 taking into account the last measured value(s) of wind power and possibly some longer-
term memory of the time-series, like the mean over the last 3 weeks, months, or years. 
In  the easiest form, this is called the persistence model, just using the last measured 
value as the forecast value. Although for very short horizons this model is quite good 
and a typical benchmark, in wind energy where the process is instationary on every time 
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scale [31] it tends to turn into large errors already after a few hours. Examples are autore-
gressive with moving average (ARMA), autoregressive integrated moving average 
(ARIMA), or Kalman filter approaches. A variation of this are ANNs, including the 
variants of support vector machines, which seem to do quite well, but often deliver no 
higher improvements over persistence than normal time-series models. Ten years ago, 
we proposed the New Reference Model [15], essentially a weighting between the mean of 
the time-series and the last measured value with the weight depending on the autocor-
relation function. This simple model seems to explain the roughly 10% improvement 
over persistence claimed by many other approaches. However, it always drags the values 
back toward the mean value, even though in some cases one would expect a current 
increase to continue.

A recent trend is the use of regime switching models that estimate a number of differ-
ent regimes within the time-series (e.g., different weather patterns) and, for every 
regime, have a different set of parameters for the time-series model(s) themselves.

Bossanyi [32] used a Kalman filter with the last six values as input and got up to 10% 
improvement in the RMSE over persistence for 1-min averaged data for the prediction of 
the next time step. This improvement decreased for longer averages and disappeared 
completely for 1-h averages.

Fellows and Hill [33] used 2-h-ahead forecasts of 10-min wind speeds in a model of the 
Shetland Islands electricity grid. Their approach was to use optimized, iterative Box-Jenkins 
forecasting from detrended data, which then was subjected to central moving average 
smoothing. For 120-min look-ahead time, the RMSE reduction over persistence was 57.6%.

Nogaret et al. [34] reported that for the control system of a medium-sized island sys-
tem, persistent forecasting is best with an average of the last two or three values, that is, 
20–30 min.

Tantareanu [35] found that ARMA models can perform up to 30% better than persis-
tence for 3–10 steps ahead in 4-s averages of 2.5 Hz sampled data.

Kamal and Jafri [36] found an ARMA(p,q) process suitable for both wind speed simu-
lation and forecasting. The inclusion of the diurnal variation was deemed important as 
the (mainly thermally driven) climate of Pakistan exhibited quite strong uniformity, 
especially in the summer months.

Dutton et  al. [37] used a linear autoregressive model and an adaptive fuzzy logic-
based model for the cases of Crete and Shetland. They found minor improvements over 
persistence for a forecasting horizon of 2 h, but up to 20% in RMSE improvement for an 
8-h horizon. However, for longer horizons, the 95% confidence band contained most of 
the likely wind speed values, and therefore a meteorological-based approach was deemed 
more promising on this timescale.

In the same team, Kariniotakis et al. [38,39] tested various methods of forecasting for 
the Greek island of Crete. These included adaptive linear models, adaptive fuzzy logic 
models, and wavelet-based models. Adaptive fuzzy logic models were installed for online 
operation in the frame of the Joule II project CARE (JOR3-CT96-0119).

Torres et al. [40] used an ARMA model to forecast hourly average wind speeds for five 
sites in Navarra. They used site- and month-specific parameters for the ARMA model. 
The ARMA model usually outperformed persistence for the 1-h forecast, and always was 
better in RMSE and MAE for higher horizons up to 10 h ahead. The two complex sites 
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have a slightly higher RMSE in general, but are still in the same range as the other sites. 
In general, 2%–5% improvements for the 1-h forecast correspond to 12%–20% improve-
ment for the 10-h forecast.

Makarov et  al. [41] described a major California ISO-led project. They developed 
 prototype algorithms for short-term wind generation forecasting based on retrospective 
data (e.g., pure persistence models). The methods tested include random walk, moving 
average, exponential smoothing, autoregression, Kalman filtering, “seasonal” differenc-
ing, and Box–Jenkins models. The Box–Jenkins model demonstrated the best 
 performance. They also used a bias compensation scheme to minimize the look-ahead 
forecast bias. For forecasts for the next hour and 1 h ahead, the total ISO-metered gen-
eration is predicted with MAE below 3% and 8% of the maximal observed generation 
correspondingly.

Pinson et al. [42] found that wind power, and especially wind power variability from 
large offshore wind farms (Horns Rev and Nysted), occurs in certain regimes, and there-
fore tested “regime-switching approaches relying on observable (i.e. based on recent wind 
power production) or non-observable (i.e. a hidden Markov chain) regime sequences” 
(p. 2327) for a one-step forecast of 1, 5, and 10-min power data. “It is shown that the 
regime-switching approach based on MSAR models significantly outperforms those 
based on observable regime sequences. The reduction in one-step ahead RMSE ranges 
from 19% to 32% depending on the wind farm and time resolution considered” (p. 2327).

Beyer et al. [43] found improvements from neural networks in RMSE for next-step 
forecasting of either 1 or 10-min averages to be in the range of 10% over persistence. 
This improvement was achieved with a rather simple topology, while more complex 
neural network structures did not improve the results further. A limitation was found 
in extreme events that were not contained in the dataset used to train the neural 
network.

Sfetsos [44] applied ARIMA and feed-forward neural network methods to wind speed 
time-series data from the United Kingdom and Greece, comparing the results of using 
either 10-min or hourly averaged data to make a forecast 1 h ahead. For both datasets, 
neither forecasting method showed a significant improvement compared to persistence 
using hourly averaged data, but both showed substantial (10%–20%) improvement using 
10-min averages. The result is attributed to the inability of hourly averages to represent 
structure in the time-series on the high-frequency side of the “spectral gap,” lying at a 
period of typically around 1 h.

Sfetsos [45,46] compared a number of methods, including a Box–Jenkins model, feed-
forward neural networks, radial basis function networks, an Elman recurrent network, 
adaptive network-based fuzzy inference system (ANFIS) models, and a neural logic net-
work based on their ability to forecast hourly mean wind speeds. All nonlinear models 
exhibited comparable RMSE, which was better than any of the linear methods. For the 
1 h ahead, the best model was a neural logic network with logic rules, reducing the error 
of persistence by 4.9%.

EPRI, the U.S. Electric Power Research Institute, has recently [47] announced their 
work on the adaptation of their artificial neural network short-term load forecaster 
(ANNSTLF) tool to wind power forecasting. They target the range of up to 3 h with 
5-min intervals.
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5.3   Meteorological Modeling for Wind Power 
Predictions

As the pure time-series models only have a reach of 6 h or so, the use of dedicated 
weather predictions has received a lot of attention in the last 8–10 years. To get useful 
results beyond, say, 6 h, the wind field (and sometimes also other variables) from a local 
area model (LAM) or a global model is needed for wind power prediction of the next day. 
Weather systems travel across the moderate latitudes with speeds rarely exceeding a few 
hundred kilometers a day; hence, an LAM will usually be able to forecast the incoming 
weather with a domain size of 1–2.000 km. In most cases, the LAM will be initialized 
using the results of a global model run, and will be nested with some larger outer domains 
of lower horizontal resolution to a final domain size of a few hundred kilometers and a 
horizontal resolution of 2–5 km. This kind of modeling, also for real-time operations, is 
clearly within reach of a larger company’s IT department, as for example a smaller Linux 
cluster suffices to run the weather research and forecasting (WRF) model, which is cur-
rently the most run meteorological model for wind energy. It should be noted here that 
the effective resolution, that is the scale at which features are actually resolved in the 
NWP model, is some 4–7 grid points [48–50]; that is, even for a horizontal grid resolu-
tion of 2 km, only features of the order of 10 km are really taken into account.

However, for most normal operations a forecasting client would use data from an 
existing model, often the model from the local or national meteorological institute. Two 
issues are noteworthy in this connection: the use of a second NWP model will in all 
cases improve the forecast (in most cases even just when averaging the two wind speed 
forecasts), and in recent years the use of ensemble forecasting has received a lot of atten-
tion, especially due to their ability to also yield an uncertainty forecast (see also 
Section 5.5).

This section gives an overview of operational NWP models having relevance for wind 
power prediction in Europe. Various global forecasting systems exist, designed to 
 predict large-scale synoptic weather patterns. But the increase in computer resources 
during the next years will allow the global models to overtake the current role of the 
limited area models (LAM) down to about a 10-km horizontal resolution. The LAMs, 
which get their boundary conditions from the global models and operate at the moment 
at horizontal resolutions of 7–12 km, will be replaced by high-resolution, convection-
resolving LAMs with horizontal resolutions well below 4 km.

The resolution of the most commonly used global forecast models further increase 
and the first models have horizontal grid resolutions well below 20 km in 2010. There is 
a consensus in the European SRNWP community (short-range numerical weather 
prediction, http://srnwp.met.hu/) that global models such as the integrated forecast 
system (IFS) at the European Centre for Medium-Range Weather Forecasts (ECMWF) 
will take over the role of LAMs in their current form. There are developments to stati-
cally nest the LAM directly into the global model (e.g., ICON at DWD, ARPEGE at 
Météo-France) with horizontal resolutions up to 5 km in certain target areas (e.g., 
Europe). In cooperation with Météo–France, a nonhydrostatic kernel of the IFS at the 
ECMWF will be developed.

http://srnwp.met.hu
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The main European LAM model consortia are the ALADIN (http://www.cnrm.
meteo.fr/aladin), COSMO (http://www.cosmo-model.org), HIRLAM (http://www. 
hirlam.org), and LACE (http://www.rclace.eu) projects and the U.K. MetOffice (http://
www.metoffice.com/research/nwp/index.html).

At the moment most countries run their models for overlapping European areas at 
grid resolutions of 12–7 km. In the next few years they will move toward a grid resolu-
tion of 4–1 km and therefore will not run an intermediate nested European grid area 
anymore. They plan to directly nest their very-high-resolution models, which then will 
cover only the national area, into a global model at 25 km or less. For very-high-resolution 
requirements of a Europe-wide SRNWP coverage a need arises for close cooperation and 
exchange of NWP products.

Rife and Davis [51] compared two otherwise identical model setups with horizontal 
resolution of 30 and 3.3 km, respectively, for wind speed variations at and near the 
White Sands Missile Range in New Mexico (United States): “The authors hypothesize 
that the additional detail and structure provided by high resolution becomes a ‘liability’ 
when the forecasts are scored by traditional verification metrics, because such metrics 
sharply penalize forecasts with small temporal or spatial errors of predicted features”  
(p. 3368). Therefore, they use three alternative skill scores, namely (in order of tolerance 
of timing errors) anomaly correlation, object-based verification, and variance anoma-
lies. “The largest improvement of the fine-grid forecasts was in the cross-mountain com-
ponent” (p. 3380). In general, the higher-resolution forecasts exhibited more skill than 
their coarser counterparts.

A large effort aiming at meteorological forecasts for wind energy has also been made 
by the original ANEMOS project. A long report [52] details some work on especially 
downscaling techniques with microscale, mesoscale, and computational fluid dynamics 
models. The best parameterization for MM5 was found to be medium-range forecast, 
although it did not lead the competition at every forecast horizon and case study. If pos-
sible from a computational point of view, two-way nesting between domains is clearly 
preferred. Whereas one group using mostly physical modeling reported increased accu-
racy down to a grid spacing of 2 km, another one using an advanced statistical model 
claimed no improvement when going from a grid spacing of 9 to 3 km. This is probably 
due to the fact that the forecasted time-series become more “realistic” when increasing 
horizontal resolution, in the sense that the ups and downs of the time-series have a simi-
lar amplitude to the original series in the high-frequency domain. However, this means a 
higher potential for phase errors, so for the usual RMSE or MAE the error goes up. 
Increasing the horizontal resolution beyond the resolution of the terrain database is fairly 
useless. On the other hand, increasing the vertical resolution in the lowest, say, 200 m of 
the atmosphere improved the results in all cases. The report closed with the following 
recommendations: “If you have a site in complex terrain, where you even after using an 
advanced MOS are not happy with the forecasts, then try to use higher- resolution model-
ling. In many cases and with a large number of approaches, the models can improve the 
NWP results. When setting up a model yourself, make sure to use the best terrain DB 
available (e.g., SRTM data), and try to get good NWP input data. Set up the model to have 
good vertical resolution, and reasonable horizontal resolution. Find out for yourself what 
“reasonable” means in this context. Use a MOS. Use insights gleaned from high- resolution 

http://www.cnrm.meteo.fr
http://www.cnrm.meteo.fr
http://www.cosmo-model.org
http://www.<00AD>hirlam.org
http://www.<00AD>hirlam.org
http://www.rclace.eu
http://www.metoffice.com
http://www.metoffice.com
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modelling to decide which parameters to employ in the MOS. In any case, setting up a 
model from scratch will take a long time before one is familiar with the model and its 
quirks, so do not plan on having a solution up and running immediately” (p. 100).

5.4  Short-Term Power Prediction Models

In the previous two sections, we described the type of models often used in short-term 
prediction, and the input data from the meteorological perspective. In this section, we 
will describe the models for the best power forecast day-ahead with the inputs given. 
There are two different main forecast business models: one is to provide the forecasts as 
a service, run from central servers at the forecasters place, and the other is to install a 
forecasting model at the client’s site, leaving the clients to run the model themselves. 
There are advantages and disadvantages to both approaches. Often, it boils down to the 
question of whether the client is willing to send its data over the Internet to the service 
provider. In other cases, it is clear that the low end of the (considerable) price range is 
typically service providers, as the setup of a forecasting model is quite a difficult and 
time-consuming task. Incidentally, the two business models were already in place in the 
first operational installations in Eastern and Western Denmark in 1993 and 1994—Risø 
ran Prediktor (without online data at the time) on their site and provided the forecasts 
through a web server, while DTU.IMM installed the WPPT in Jutland.

The Risø DTU Prediktor has already been described earlier in this chapter. The other 
Danish tool, the Wind Power Prediction Tool (WPPT) has been developed by the 
Institute for Informatics and Mathematical Modelling (IMM) of the Technical University 
of Denmark. In 2006, the original developer Torben Skov Nielsen together with Henrik 
Madsen and Henrik Aalborg Nielsen founded the DTU spin-off company ENFOR, 
which now stands for all commercial activity with the model. WPPT has been running 
operationally in Western Denmark since 1994 and in Eastern Denmark since 1999. They 
use adaptive recursive least-squares estimation with exponential forgetting in a multi-
step setup to predict from 0.5 up to or more than 36 h ahead. A data-cleaning module 
was developed, as was an upscaling model. This model has successfully operated at 
Elsam and other Danish utilities [53]. WPPT is a modeling system for predicting wind 
power production for individual wind farms, for groups of wind farms, or for a larger 
region. WPPT can be configured to take advantage of the following data:

• Online power production measurements for individual wind farms
• Aggregated online power production measurements for larger areas
• Offline power production measurements for individual wind farms
• Aggregated offline power production measurements for larger areas
• NWP data covering individual wind farms
• NWP data covering larger areas
• Multiple NWP forecast providers
• Scheduled availability and curtailment

The forecasts can be in the form of single-point forecasts (forecasts of the expected 
value) or in the form of probabilistic forecasts where the entire distribution of the 
expected outcome is given.
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The complexity of the model structure employed by WPPT will depend on the 
available data. In order to illustrate the flexibility of WPPT, a complex installation for 
predicting the total wind power production in a larger region on the basis of a combi-
nation of online measurements of power production from selected wind farms, power 
measurements for all wind turbines in the region, and NWPs of wind speed and wind 
direction is presented here as an example.

A central part of this system is the statistical models for short-term prediction of the 
wind power production in wind farms or areas. The modeling system combines tradi-
tional linear models with a specific but very general class of nonlinear models—the 
conditional parametric models.

For online applications, it is advantageous to allow the function estimates to be modi-
fied as data become available. Furthermore, because the system may change slowly over 
time, observations should be down-weighted as they become older. For this reason, a 
time-adaptive and recursive estimation method is applied.

The time-adaptivity of the estimation is an important property as the total system 
consisting of a wind farm or area, its surroundings, and the NWP model itself will be 
subject to changes over time. This is caused by effects such as aging of the wind turbines, 
changes in the surrounding vegetation, and, maybe most importantly, changes in the 
NWP models used by the weather service as well as changes in the population of wind 
turbines in the wind farm or area.

Nielsen et al. [54] found a way to algorithmically optimize the tuning parameters for 
the time-adaptive model, like forgetting factor and bandwidth. In the same work, they 
also improved the robustness of WPPT against suspicious data.

Depending on the available data, the WPPT modeling system employs a highly flex-
ible modeling hierarchy for calculating predictions of the available wind power from 
wind turbines in a region. For a larger region, this is typically done by separating the 
region into a number of subareas. Wind power predictions are then calculated for each 
subarea and hereafter summarized to get a prediction for the total region.

In the following an installation using online production data from a number of 
wind farms in a region (reference wind farms), offline production data for the remain-
ing wind turbines in the region, and NWPs of wind speed and wind direction in the 
calculation of a total regional power prediction is outlined. The predictions cover a 
horizon corresponding to the prediction horizon of the NWPs—typical from 1 to 48 h 
ahead in time. The time resolution of the predictions can be chosen freely but a 
 reasonable choice for the longer prediction horizons is to use the same time resolution 
as available for the NWPs.

The predictions for the total region are calculated for a number of reference wind 
farms using online measurements of power production as well as NWPs as input. The 
predictions from the reference wind farms in the region are summarized and hereafter 
upscaled to get the prediction of power production of all wind turbines in the region. 
This modeling chain takes advantage of the autocorrelation present in the power pro-
duction for prediction horizons less than approximately 12–18 h, but also of the smooth 
properties of the total production as well as the fact that the numerical weather models 
perform well in predicting the weather patterns but less well in predicting the local 
weather at a particular wind farm.
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The power prediction for the region is here calculated directly by the upscaling model, 
but a larger region could be separated into a number of subareas, each covered by a 
model chain as described above. The total power production will then be calculated as a 
sum of the predictions for the subareas.

A rather similar approach to Prediktor was developed at the University of Oldenburg 
[55]. They named it Previento [56]. A good overview of the parameters and models influ-
encing the result of a physical short-term forecasting system has been given by Mönnich 
[57]. He found that the most important of the various submodels being used is the model 
for atmospheric stability. Mönnich also found that the submodels for orography and 
roughness were not always able to improve results. The use of MOS was deemed very 
useful. However, as the NWP model changed frequently, the use of a recursive technique 
was recommended. A large influence was found regarding the power curve. The theo-
retical power curve given by the manufacturer and the power curve found from data 
could be rather different. Actually, even the power curve estimated from data from dif-
ferent years could show strong differences. The latter might be due to a complete over-
haul of the turbine. The largest influence on the error was deemed to come from the 
NWP model itself. In 2004, the two principal researchers behind Previento, Matthias 
Lange and Ulrich Focken, left the university to form energy & meteo systems GmbH, a 
company that had good success from the start and has now over 20 employees. Their 
work on the weather-dependent combination of models has also been published [22]. In 
essence, principal component analysis identifies between five and eight different weather 
types, and the model parameters are optimized according to weather type.

ARMINES and RAL have developed work on short-term wind power forecasting 
since 1993. Initially, short-term models for the next 6–10 h were developed on the basis 
of time-series analysis to predict the output of wind farms in the frame of the LEMNOS 
project (JOU2-CT92–0053). The developed models were integrated in the EMS software 
developed by AMBER S.A and installed for online operation on the island of Lemnos.

Various approaches have been tested for wind power forecasting based on ARMA, 
neural networks of various types (backpropagation, RHONN, etc.), fuzzy neural net-
works, wavelet networks, and so on. From this benchmarking procedure, models based 
on fuzzy neural networks were found to outperform the other approaches [39,58,59].

The wind forecasting system of ARMINES integrates:

• Short-term models: these are based on the statistical time-series approach able to 
predict efficiently wind power for horizons up to 10 h ahead.

• Longer-term models: these are based on fuzzy neural networks able to predict the 
output of a wind farm up to 72 h ahead. These models receive as input online 
SCADA data and NWPs [60].

• Combined forecasts: such forecasts are produced from intelligent weighting of 
short-term and long-term forecasts for an optimal performance over the whole 
forecast horizon.

The developed prediction system is integrated in the MORE-CARE EMS software 
and is installed for online operation in the power systems of Crete and Madeira [61]. 
A  stand-alone application of the wind forecasting module is configured for online 
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 operation in Ireland [62]. An evaluation of this application is presented in Reference 
[63]. The average reported error is of the order of 10% of the installed power. For Ireland, 
they show that using a power curve derived from HIRLAM wind and measured power 
can improve the forecast RMSE by nearly 20% in comparison with using the manufac-
turer’s power curve [62].

Wind power of 80 MW is installed on the island of Crete where the demand varies 
between 170–450 MW throughout the year. Wind penetration reaches high levels. 
Furthermore, the fact that the network is autonomous makes the use of wind power 
forecasting necessary for an economic and secure integration of wind farms in the grid. 
Currently, the MORE-CARE system [64] is installed and operated by PPC in Crete and 
provides wind power forecasts for all the wind farms for a horizon of 48 h ahead. These 
forecasts are based on NWPs provided by the SKIRON system, which is operated by 
IASA. Online data are provided by the SCADA system of the island.

In Portugal, the MORE-CARE system is operated by EEM and provides forecasts 
for the production of the wind farms on the island of Madeira. The prediction modules 
provide forecasts for the short-term up to 8 h ahead using online SCADA data as 
input. Moreover, MORE-CARE provides predictions for the run-of the river hydro-
installations of the island.

Since 2000, the ISET has operatively worked with short-term forecasting, using the 
DWD model and neural networks. It came out of the German federal monitoring 
 program—Wissenschaftliches Mess-und EvaluierungsProgramm (WMEP) [65], where 
the growth of wind energy in Germany was to be monitored in detail. Their first customer 
was E.On, who initially lacked an overview of the current wind power production and 
therefore wanted a good tool for nowcasting [66]. Their model was called the Advanced 
Wind Power Prediction Tool.

Ernst and Rohrig [67] reported in Norrköping in 2002 on the latest developments of 
ISET’s WPMS. They then predicted for 95% of all wind power in Germany. In some areas 
of German TSOs, E.On Netz and Vattenfall Europe Transmission, wind power exceeded 
100% coverage at times. An additional problem in Germany is that the TSOs even lack 
the knowledge of the currently fed in wind power. In the case of E.On Netz, the installed 
capacity of ca. 5 GW has been upscaled from 50 representative wind farms with one-
third of the total installed capacity (from 16 farms totaling 425 MW). Their input model 
was the Lokalmodell (always the actual model) of the DWD, which they then feed into 
an ANN. To improve on the Lokalmodell, they tried transforming the predicted wind to 
the location of wind farms using the numerical mesoscale atmospheric model KLIMM 
(KLImaModell Mainz), but dropped it again (B. Ernst, personal communication, 
September 17, 2003). The Lokalmodell is run twice daily with a horizontal resolution of 
7 km, forecasting up to 48 h ahead. The ANN also provides for an area power curve. The 
WPMS runs at E.On since 2001, at RWE since June 2003, for Vattenfall Europe since the 
end of 2003, and in a variety of other places as well [68]. A version for 2 h horizon has 
been developed for National Windpower in the United Kingdom. For the E.On total 
area, they claim RMSE values of 2.5% for 1 h horizon (3.3% persistence), 5.2% for 3 h 
(7.3% persistence), and 6% for 4 h (9% persistence), and reach the error of a purely NWP-
based prognosis (7.5%) at 7 h horizon.
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The strong wind energy growth in Spain led Red Eléctrica de España (the Spanish 
TSO) to have the Sipreólico tool developed by the University Carlos III of Madrid [69]. 
The tool is based on Spanish HIRLAM forecasts, taking into account hourly SCADA data 
from 80% of all Spanish wind turbines [30]. These inputs are then used in adaptive 
 nonparametric statistical models, together with different power curve models. There are 
nine different models, depending on the availability of data: one pure time-series model, 
not using NWP input at all; three more include increasingly higher-order terms of the 
forecasted wind speed; and a further three also take the forecast wind direction into 
account; the last two are combinations of the other ones, plus a nonparametric prediction 
of the diurnal cycle. These nine models are recursively estimated with both a recursive 
least-squares algorithm and a Kalman filter. For the recursive least-squares algorithm, a 
novel approach is used to determine an adaptive forgetting factor based on the link 
between the influence of a new observation, using Cook’s distance as a measure, and the 
probability that the parameters have changed. The results of these 18 models are then 
used in a forecast combination [70], where the error term is based on exponentially 
weighted mean squared prediction error with a forgetting factor corresponding to a 24-h 
memory. The R2 for all of Spain is more than 0.6 for a 36 h horizon. The main problem of 
the Spanish case is the Spanish HIRLAM model in conjunction with the complex terrain. 
The resolution of HIRLAM is not enough to resolve the flow in many inland areas. The 
model itself works very well when driven by measured wind speeds instead of predicted 
ones (with R2 over 0.9 for the whole horizon; see also Figure 5.5).

LocalPred and RegioPred [71] are a family of tools developed by Martí Perez et al. (at 
formerly Centro de Investigaciones Energéticas Medioambientales y Tecnológicas—
CIEMAT, now Centro Nacional de Energías Renovables—CENER). Originally, it 
involved adaptive optimization of the NWP input based on principal component analy-
sis, time-series modeling, mesoscale modeling with MM5, and power curve modeling. 
They could show, for a case of rather complex terrain near Zaragoza (Spain), that the 
resolution of HIRLAM was not good enough to resolve the local wind patterns [72]. The 
two HIRLAM models in Spain were at the time running on a 0.5° × 0.5° and 0.2° × 0.2° 
resolution. The use of WPPT as a statistical postprocessor for the physical reasoning was 
deemed very useful in the early stages of the development [73]. Successive research and 
development carried out at CENER [74] have transformed LocalPred into a multimodel 
wind power forecasting system. In its current form, an ensemble forecasting model takes 
MM5, SKIRON, and the ECMWF model as NWP inputs for learning machine  techniques 
as cluster or support vector machines. The final prediction is offered by an adaptive 
model that combines all the individual inputs.

GL Garrad Hassan [75] has a forecasting model called GH Forecaster, based on NWP 
forecasts from the U.K. MetOffice. It uses “multi-input linear regression techniques” to 
convert from NWP to local wind speeds. For T + 24 h, they reach 35%–60% improve-
ment over persistence.

eWind is an American model by TrueWind, Inc. (now AWS TruePower) [76]. Instead 
of using a once-and-for-all parameterization for the local effects, like the Risø approach 
does with WAsP, they run the ForeWind numerical weather model as a mesoscale model 
using boundary conditions from a regional weather model. This way, more physical 
 processes are captured, and the prediction can be tailored better to the local site. In the 
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initial configuration of the eWind system, they used the mesoscale atmospheric simula-
tion system (MASS) model [77]. Additional mesoscale models used were: ForeWind, 
MM5, WRF, COAMPS, workstation-ETA, and OMEGA. To iron out the last systematic 
errors they use adaptive statistics, either a traditional multiple screening linear  regression 
model, or a Bayesian neural network. Their forecast horizon is 48 h. They published a 
50% improvement in RMSE over persistence in the 12–36 h range for five wind towers in 
Pennsylvania [78]. The current iteration of eWind uses ARPS, MASS, and WRF, fed by 
the global models GFS, GEM, and ECMWF, to yield an ensemble of nine different model 
runs [79]. For the average prediction of six wind farms in Europe, their “results reveal 
that the ensemble prediction outperforms the accuracy of [. . .] the MOS method applied 
to single NWP models, achieving between a 20 and 30% of improvement during the first 
three days of prediction” (p. 1). Zack [80] of AWS TrueWind, Inc. presented the 
high-resolution atmospheric model to operate in a rapid update cycle mode, called Wind 
Energy Forecast Rapid Update Cycle (WEFRUC). The model assimilates different types 
of data available in the local area environment of a wind plant such as remotely sensed 
data, which is the starting point for a short-term simulation of the atmosphere. So, the 
atmospheric  simulation produced by the physics based model is incrementally corrected 
through the use of the measured data as it evolves. The update cycle is 2 h.

The 3Tier Environmental Forecast Group [81] works with a nested NWP and statisti-
cal techniques for very short terms in the Pacific Northwestern United States. They show 
performance figures in line with most other groups in the field.

This list is far from exhaustive. In the two larger overviews mentioned in the 
 introduction, there are more models listed. It can be estimated that there are some 50 
professional groups and companies providing reasonable or better forecasts or forecast 
models.

5.5  Uncertainty, Ramps, and Variability

The direct application of forecasting tools to NWP or time-series models leads to what 
could be called a deterministic forecast. The technology for this had already been devel-
oped during the 1990s, and though small improvements to the general process are still 
possible, the big improvements are to be found in additional services or types of fore-
casts. The small incremental improvements are, for example, the development of a better 
statistical estimation of the power curve by Pinson and Madsen [82], or the use of regime 
switching models by Gneiting et al. [83] or Pinson et al. [42] for a more specific conver-
sion from wind forecast to power depending on the large-scale weather type.

5.5.1  Probabilistic Forecasting

Owing to the fact that improvements of the forecast quality as such were slow, the main 
focus of research went into additional issues, especially the forecast uncertainty. Already 
in the early days of Landberg, the plots could contain some error bars calculated from 
historic data. However, those error bars were static and not dependent on the actual 
forecast. Fully probabilistic forecasts began to appear only after 2000. Typical confi-
dence interval methods, developed for models like neural networks, are based on the 
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assumption that the prediction errors follow a Gaussian distribution. This, however, is 
often not the case for wind power prediction where error distributions may exhibit some 
skewness, while the confidence intervals are not symmetric around the spot prediction 
due to the form of the wind farm power curve. On the other hand, the level of predicted 
wind speed introduces some nonlinearity to the estimation of the intervals; for example, 
at the cut-out speed, the lower power interval may suddenly switch to zero.

A probabilistic forecast can be in different forms, most typically a quantile forecast. 
This means, for example, that the 20% quantile forecast is a direct forecast of the value 
that is exceeded 80% of the time. Another possibility is to derive the probability density 
function (PDF), whereas a third option is to derive uncertainty bands around the deter-
ministic forecast. Note that the 50% quantile forecast is not the deterministic forecast—
usually it is smoother than the deterministic forecast. There are two essential ways to get 
to the probabilistic forecast: either through some clever data manipulation of the single 
NWP (and SCADA) data feeds or through the use of ensembles of weather forecasts. 
Those ensembles can be dedicated weather ensembles either from a single source, like 
the 11-member NCEP (National Centers for Environmental Prediction) ensemble or the 
51-member ECMWF ensemble, or from the same model with different parameteriza-
tions like the WEPROG multi-scheme ensemble prediction system (MSEPS) (see weprog.
com), or it can be the deterministic runs from various institutes.

TIGGE, the THORPEX Interactive Grand Global Ensemble, is a key component of 
the THORPEX World Weather Research Programme to accelerate the improvements 
in the accuracy of 1-day to 2-week high-impact weather forecasts. For mentions of the 
different systems contributing to the TIGGE database, see References [84–92]. The 
data can be accessed via three servers in Europe (http://tigge-portal.ecmwf.int/), 
America (http://tigge.ucar.edu/), and Asia (http://wisportal.cma.gov.cn/tigge/). The 
forecasts are available for research purposes with a time delay of 48 h. In 2010, the 
ECMWF ensemble prediction system resolutions increased from TL399/TL255 to 
TL639/TL319.

The increase in available computer power led to some progressive thinking on how to 
make the best use of these resources. Instead of just increasing the resolution, the pro-
cessing cycles might be better used in reducing the other errors. This can be done using 
ensembles of forecasts, either as a multimodel ensemble, using many different NWP 
models of different parameterizations within the same model, or by varying the input 
data and calculating an ensemble based on different forecast initializations. The use of 
this is to be able to quantify the uncertainty inherent in the forecasts. For example, if a 
slight variation in the initial state of the model (which is still consistent with the mea-
sured data) leads to a larger variation a few days ahead, where for example a low-pressure 
system takes one of two distinct tracks, then the situation is different from one where all 
low-pressure tracks more or less run over the same area. A number of groups in the field 
are currently investigating the benefits of ensemble forecasts.

Möhrlen et  al. [93] used a multischeme ensemble of different parameterization 
schemes within HIRLAM. They make the point that, if the observational network has a 
spacing of 30–40 km, it might be a better use of resources not to run the NWP model in 
the highest possible resolution (in the study, 1.4 km), but instead to use the computer 
resources for calculating a large amount of forecasts and generate an ensemble. A doubling 

http://tigge-portal.ecmwf.int
http://tigge.ucar.edu
http://wisportal.cma.gov.cn
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of resolution means a factor 8 in running time (as one has to double the number of 
points in both horizontal grid components and time). The same effort could therefore be 
used to generate eight ensemble members. The effects of a lower resolution would not be 
so bad, as effects well below the spacing of the observational grid are mainly invented by 
the model anyway, and could be taken care of by using direction-dependent roughness 
instead. Giebel et al. [94] and Waldl and Giebel [95,96] investigated the relative merits of 
the Danish HIRLAM model, the Deutschlandmodell of the DWD, and a combination of 
both for a wind farm in Germany. The RMSE of the Deutschlandmodell was slightly 
better than the one of the Danish model, whereas a simple arithmetic mean of both 
models yielded an even lower RMSE.

Giebel and Boone [97] extended this analysis to additional wind farms and used two 
different short-term prediction models for the analysis. The result was the same, that a 
combination of models is helpful. Nielsen et  al. [98] showed that the combination of 
models can always be better than the best of the two input models and that, in most 
cases, even a simple average outperforms the best of the models. In their paper, they 
developed the theory of how to combine forecasts if bias and variance/covariance of the 
individual forecasts are known. They applied their approach to two wind farms in 
Denmark (Klim) and Spain (Alaiz) with up to four individual forecasts per wind farm, 
all done by WPPT with different NWP input. This “resulted in improvements as high as 
15%, with an overall level of 9%, for the wind farm near Klim in Denmark. For the wind 
farm near Alaiz, the corresponding numbers are 9 and 4%, respectively. However, for 
Alaiz if one meteorological forecast and three different combinations of MOS and 
power-curve are used, then no improvement is obtained” (p. 481).

In the framework of the Danish PSO-funded project Intelligent Prognosis, Nielsen 
et al. [54] showed generic figures for the potential improvement of an additional NWP 
forecast depending on the correlation between the forecasts and the relative perfor-
mance. The figures were verified for the two wind farms in Klim in Denmark and Alaiz 
in Spain. It “is recommended that two or three good meteorological forecasts are used 
and the forecast errors of these should have low correlation (less that approximately 0.8). 
This seems to be the case for meteorological forecasts originating from different global 
models” (p. 9).

Pinson and Kariniotakis [99,100] proposed a methodology for the estimation of con-
fidence intervals based on the resampling approach. This method is applicable to both 
physical and statistical wind power forecasting models. The authors also presented an 
approach for assessing online the uncertainty of the predictions by appropriate predic-
tion risk indices [“Meteo risk index” (MRI)] based on the weather stability. They used a 
measure of the distance (or the similarity) of subsequent predictions in a poor-man’s 
ensemble. The approach was verified using HIRLAM forecasts and data from five wind 
farms in Ireland.

Lange and Waldl [21,101] classified wind speed errors as a function of look-ahead 
time. The errors in wind speed of the older DWD Deutschlandmodell are fairly indepen-
dent of the forecast wind speed, except for significantly lower errors for the 0- and 1-m/s 
bins [101]. Another result was that only for some wind farms did the error depend on the 
Grosswetterlage (a classification system with 29 classes for the synoptic situation in 
Europe), as classified by the DWD. As a result of the nonlinearity of the power curve, 
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wind speed forecasting errors are amplified in the high-slope region between the cut-in 
wind speed of the turbine and the plateau at rated wind speed, where errors are damp-
ened. Landberg et al. [102] reported the same behavior. Nielsen [103] also showed the 
WPPT error for Western Denmark to have its peak at a forecast of half the installed 
capacity. This method is only applicable to models that provide intermediate forecasts of 
wind speed at the level of the wind park.

The WEPROG MSEPS has been operational since 2004. On the basis of WEPROG’s 
own NWP formulation, the system is built up with three different dynamics schemes, 
five different condensation schemes, and five different vertical diffusion schemes, 
which result in an ensemble of 75 members. The characteristic of the MSEPS system is 
that it has the capability to develop physical uncertainties with well-defined differ-
ences among the ensemble members. This is of advantage especially for wind energy 
predictions, because it means that the uncertainty is not dependent on the forecast 
horizon as in other ensemble approaches, but instead develops in every forecast step as 
a result of the physically different formulations of the individual ensemble members [17] 
(http://www.weprog.com/publications).

In Denmark, the Zephyr collaboration had a PSO-funded 3-year project [104,105] 
on the use of different kinds of ensembles for utility grade forecasting. Among others, 
the NCEP, the National Center for Atmospheric Research (NCAR), and ECMWF 
ensembles were used, multimodel ensembles (with input from both DMI and DWD) 
were compared, and some methods for a good visual presentation of the uncertainty 
were researched. One main result [106] was the development of a technique to trans-
form the quantiles of the meteorological distribution to the quantiles of the power 
forecast distribution. The resulting quantiles were sharp and skillful. The use of pure 
meteorological ensemble quantiles was shown to be insufficient, as the ensemble 
spread is not probabilistically correct. Even using the transformation it was not pos-
sible to get satisfactory outer quantiles (eg below 15% and above 90%), as the meteo-
rological ensemble spread is not large enough. This is especially relevant for the first 
days of the ensemble runs. However, in practice, this might be less of a problem, as 
the ensemble runs also needed 17 h to complete, therefore making the first day 
impossible to use operatively. The model was used in a demo application run for two 
Danish test cases, the Nysted offshore wind farm and all of the former Eltra area 
(Denmark West). The results were quite  satisfactory, with a horizon of 1 week, and 
were used for maintenance scheduling of conventional power plants, for the weekly 
coal purchase planning and for trading on the Leipzig electricity exchange, which is 
closed over the weekends. Besides a final project report [8], a number of more detailed 
reports on the model [107], the experiences with the demo application [108], the pos-
sibilities of nesting HIRLAM directly in the ECMWF ensemble members [109], and 
some special turbulent kinetic energy parameterizations within HIRLAM [110] 
came out.

Roulston et  al. [111,112] evaluated the value of ECMWF forecasts for the power 
 markets. Using a rather simple market model, they found that the best way to use the 
ensemble was what they called climatology conditioned on the ECMWF ensemble pre-
diction system. The algorithm was to find 10 days in a reference set of historical forecasts 
for which the wind speed forecast at the site was closest to the current forecast. This set 

http://www.weprog.com
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was then used to sample the probability distribution of the forecast. This was done for 
the 10th, 50th, and 90th percentile of the ensemble forecasts.

Taylor et al. [113] created a calibrated wind power density from the ECMWF ensem-
ble prediction system. “The resultant point forecasts were comfortably superior to those 
generated by the time-series models and those based on traditional high resolution wind 
speed point forecasts from an atmospheric model” (p. 781).

Pinson and Madsen [82] “describe, apply and discuss a complete ensemble-based 
probabilistic forecasting methodology” for the example case of Horns Rev as part of the 
Danish PSO research project “HREnsembleHR”—High Resolution Ensemble for Horns 
Rev, funded by the Danish PSO Fund from 2006–2009 (see www.hrensemble.net) 
(p. 137). The forecasts from WEPROG’s 75-member MSEPS ensemble are converted to 
power using the novel orthogonal fitting method. The single forecasts are then  subjected 
to adaptive kernel dressing with Gaussian kernels, as “in theory, any  probabilistic den-
sity may be approximated by a sum of Gaussian kernels,” meaning that the resulting 
probabilistic distribution can be “a non-symmetric distribution (and possibly multi-
modal), thus being consistent with the known characteristics of wind power forecast 
uncertainty” (p. 142).

Bremnes [114] developed a probabilistic forecasting technique, estimating the differ-
ent quantiles of the distribution directly. In another study [115], Bremnes described his 
method of local quantile regression (LQR) in more detail, and showed that, for a test 
case in Norway, HIRLAM forecasts have a lower interquantile range than climatology, 
which means that the HIRLAM forecasts actually exhibit skill. LQR HIRLAM features 
about 10% better in economic terms than pure HIRLAM forecasts, increasing the reve-
nue from ca.75%–79% of the ideal income (without any forecast errors) to ca.79%–86%, 
depending on the horizon. However, his pure HIRLAM forecasting did not have an 
upscaling or MOS step, so this might have worked in favor of LQR in comparison. 
Bremnes proposed to use the method to reduce the large amount of information found 
in meteorological ensembles. The motivation for this was that he could show that the 
economically optimal quantile was not the central (“best”) quantile, but one given by 
the relative prices of up- and down-regulation.

Bremnes [116] compared three different statistical models for quantile forecasts: LQR, 
the local Gaussian model (assuming that, around the forecasted values, the distribution 
can be approximated with a Gaussian), and the Nadaraya–Watson estimator. Applied to 
a wind farm in Norway with HIRLAM 10 forecasts, no clear preference of method was 
found, although the local Gaussian model produced slightly more uncertain forecasts 
than the other two methods. So if ease of implementation is an issue, the Nadaraya–
Watson estimator might be the best.

Nielsen and Madsen [103] developed a stochastic model for Eltra, describing variance 
and correlation of the forecast errors of WPPT, version 2. Nielsen et al. [117,118] tried a 
method similar to the LQR technique for the case of the small Danish offshore wind 
farm Tunø Knob, using WPPT with various parameters as input, among them the MRI. 
They concentrated on the 25% and 75% quantiles. Also here, the predictions proved 
“sharp” in comparison with historic data, meaning that the interquantile range, given as 
the difference between the 75% and the 25% quantile, is much narrower than the histori-
cal average of the quantiles of the production distribution. There were deviations in 

www.hrensemble.net
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quantiles between the training set and the test set. For the LQR approach, it did not seem 
important to include the MRI.

The optimal combination of forecasts is a field that has garnered attention quite 
recently. As Sánchez [119] points out, “It is common in the wind energy industry to have 
access to more than one forecaster. It is well known that the relative performances of the 
alternative wind power forecasts can vary with the wind farm, and also with time. In 
these cases, an adaptive combination of forecasts can be useful to generate an efficient 
single forecast” (p. 691/2). He therefore implemented for the Spanish TSO a two-step 
procedure involving the adaptive exponential combination (AEC): “The AEC is designed 
to give all of the weight to the best available forecast” (p. 691/2).

5.5.2  Ramp Forecasting

In Europe, where the high density of population and the need for a given distance to the 
neighbors of a wind farm led to fairly small wind farm sizes, the distribution of the 
installed wind power capacity over a larger area leads to smoothing of the wind power 
output. Therefore, sudden increases or decreases of the wind power feed were a rare 
occurrence, and were not usually forecast separately. This is currently changing rapidly, 
with wind farm sizes in the United States, Scotland, Australia, and generally offshore 
reaching into some hundred MWs, and even more in China, where the current plan 
involves development of seven large wind farm areas of 10 GW each. The ramps coming 
from such a large concentrated wind farm area can be quite drastic in comparison with 
the load at the feed-in point. Therefore, especially in the United States, in recent years 
talk has been on the need for a ramp forecast. For example, Bonneville Power 
Administration [5] held a competition dedicated to ramp forecasting. The first results [6] 
indicated that, for ramps, hourly predictions are not good enough, and shorter timings 
of the forecast lead to smaller deviations. However, as Focken [120] pointed out, in the 
subsequent Request for Proposals for a short-term prediction system, ramps were not 
mentioned at all. Focken (having been part of the ramp forecasting competition with his 
company energy & meteo systems GmbH) attributes this to the fact that a ramp does not 
have an action in the control room associated with it “the operators don’t know what to 
do with a ramp forecast.” Having said that, in the remainder of his talk Focken pointed 
out that the ramp forecast needs to be something separate from the usual root mean 
square-optimized forecast, since this tends to be too smooth.

5.5.3  Variability Forecasting

In between forecasts of the uncertainty and of single extreme events there is a third cat-
egory that is slowly receiving attention: variability forecasting. Often, it is possible to 
forecast that the weather situation tomorrow is going to be quite variable or quite 
stable.

Variability forecasting refers to large amplitude, periodic changes in wind speed, and 
it is only recently that it has come into the sight of researchers. Davy et al. [121] defined 
an index of variability based on the standard deviation of a band-limited signal in a 
moving window, and developed methods to statistically downscale reanalysis data to 
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predict their index. Among the important predictors of variability, they found planetary 
boundary layer height, vertical velocity, and U-wind speed component during June to 
September (southern hemisphere winter), and U-wind speed, geopotential height, and 
cloud water during December to February (southern hemisphere summer).

Vincent et  al. [31,122] defined a variability index as the sum of all amplitudes 
 occurring within a given frequency range based on an adaptive spectrum. They studied 
the climatological patterns in variability on timescales of minutes to 10 h at the Horns 
Rev wind farm, and showed that there were certain meteorological conditions in which 
the variability tended to be enhanced. For example, variability had a higher average 
amplitude in-flow from sea than in-flow from the land, often occurred in the presence of 
precipitation, and was most pronounced during the autumn and winter seasons.

Von Bremen and Saleck [123] proposed the totalfluc, the sum of the absolute values of 
gradients exceeding a certain threshold within a, say, 6-h period, as a measure of vari-
ability. The variability of wind speed data from FINO 1, converted to power with the 
power curve of the nearby Alpha Ventus offshore wind farm, was highest around a wind 
speed of 10 m/s. A clustering analysis of the principal components of the 500-hPa 
 geopotential height showed that the largest variations occurred for north-western flow.

Vincent and Hahmann [124] showed, for a fairly frequent offshore weather pheno 
menon called open cellular convection, that the phase (i.e., timing) of the errors is essen-
tially impossible to forecast, but the period of the variability and the general appearance 
of this weather phenomenon is quite well predicted.

5.6   Decision-Making and Value Derived 
from Wind Power Forecasts

If one asks the control room personnel of a large utility or TSO what they wish from a 
forecast, their answer usually is “just give us your best forecast,” that is, they are only 
interested in the most probable forecast. A probabilistic forecast contains more informa-
tion than can be easily digested, and at most end users there is no decision-making 
process attached to a quantile forecast. Therefore, the researchers and operators of fore-
casts try to integrate tools for the best decision-making process in the forecasting soft-
ware, so as to give the user an optimal solution for a given problem with the input 
available. For example, the ANEMOS.plus project (see Anemos-plus.eu) integrates tools 
for scheduling, trading, storage management, bottleneck management, and reserve allo-
cation in the ANEMOS platform.

Hasche et  al. [125] used wind power integration in liberalized electricity markets 
(WILMAR model) to assess the value of improved forecasts in operations in Germany. 
One interesting conclusion was that “Operational costs due to forecast errors could be 
reduced by one third if an overall stochastic optimization were used in scheduling” (p. 21).

Also, Dobschinski et  al. [126] found that the balancing cost, especially for minute 
reserve, could be much lower if the TSOs used the probabilistic distributions offered by 
modern forecasting models for the day-ahead prediction. However, this is mitigated by 
the fact that, as they show, a proper use of forecasts for the next few hours is even better.

Even though the necessity and advantages of wind power forecasting are generally 
accepted, not many analyses have examined in detail the benefits of forecasting for 
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a utility. This lack of analyses stems partly from the fact that a lot of data input and a 
proper time step model are needed to be able to draw valid conclusions. In recent years, 
a number of wind integration studies have undertaken the effort with data backing from 
typically the TSO.

Nielsen et al. [127] assessed the value for Danish wind power on the NordPool elec-
tricity exchange to be 2.4 €c/kWh in a year with normal precipitation (the NordPool 
system is dominated by Norwegian and Swedish hydropower). This would be reduced by 
0.13–0.27 €c/kWh due to insufficient predictions. The same result is expressed as the 
penalty due to bad prediction of wind power being 12% of the average price obtained on 
NordPool by Sørensen and Meibom [128].

Gilman et  al. [129] found that AWS TrueWind Inc.’s forecasting saved Southern 
California Edison US$2 million in imbalance cost for December 2000 alone, compared 
to a system based on pure climatology.

Parkes et al. [130] did an analysis using the GH Forecaster service for the United 
Kingdom and Spain. Although the two markets are different, both work under the 
assumption that it should pay to have better forecasts. In the United Kingdom, the 
best forecast was the centered one, meaning that the technically best forecast was also 
the economically best for the wind farm owner. A 50 MW wind farm with 30% capac-
ity factor could gain £660.000 from forecasting. Owing to the 5% lower MAE for a 
total portfolio of three wind farms, another £3/MWh could be gained. In Spain, the 
exercise yielded about 7 €/MWh for the single wind farm and another 3 €/MWh for a 
portfolio. Using a better power model, their group estimated [131] for a 100 MW wind 
farm in the United Kingdom an added income of €177.000 per year for a 1.2% MAE 
improvement.

The importance and impact of good forecasts were also stated by Operations Manager 
Carl Hilger from Eltra (the antecessor of Energinet.dk) [132]: “If only we improved the 
quality of wind forecasts with one percentage point, we would have a profit of two mil-
lion Danish crowns.” Similar orders of magnitude are quoted infrequently by other utili-
ties or traders, but usually not for publication. For the Xcel energy forecasting project, 
arguably the largest and most ambitious privately funded forecasting project to date, 
Parks [133] reported savings of US$6 million for 1 year alone for three different regions. 
This significantly exceeds their investment (which is not a public figure; Keith Parks, 
personal communication, May 9, 2011).

In a widely quoted paper, Pinson et al. [134] “formulate a general methodology for 
deriving optimal bidding strategies based on probabilistic forecasts of wind generation” 
(p. 1148). By taking into account the uncertainty structure of the forecast, the bidding 
strategy based on probabilistic choice can lead to a reduction of more than half the regu-
lation cost for the wind power producer, in their example of a multi-megawatt wind farm 
participating in the Dutch electricity market in 2002.

For users of short-term predictions, there is a series of workshops, probably the closest 
thing to an actual forecast user group, run by Giebel (see powwow.risoe.dk/
BestPracticeWorkshop.htm). The slides of the participant talks are available from the 
website. Most notably, it is interesting to see the different challenges that the different 
utilities or TSOs have, and how they use the wind power forecasts to address those 
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 challenges. During the POW’WOW project, a report was written on the first two 
 workshops [135]. “Some major results of the workshops were:

• Competition improves accuracy.
• The value of accurate wind power predictions is appreciated.
• The market for wind power prediction models is mature, with many service 

providers.

The Best Practice in the use of short-term forecasting of wind power can be sum-
marised as:

• Get a model.
• Get another model (NWP and/or short-term forecasting model).
• Get a good nationwide model instead of many simple and cheap models.
• Balance all errors together, not just wind.
• Use the uncertainty/PDF.
• Use intraday trading.
• Use longer forecasts for maintenance planning.
• Meteorological training for the operators.
• Meteorological hotline for special cases.

Additionally, if you are setting up a system for dealing with wind power in your 
country,” (p. 6) there are essentially two ways to deal with forecasting: a demand on 
every wind power producer, as for example in Spain or the United Kingdom, or with a 
centralized system as in Germany or Denmark. As “the system operator needs to have 
a good quality forecasting tool anyway, so all the other producers of wind power might 
as well forego the need to get forecasts themselves” (p. 6).

5.7  Conclusions

During the last 25 years, wind power forecasting has developed greatly, from the first 
approaches using just time-series for the forecast, to the use and power conversion of NWP 
products, to dedicated probabilistic forecasts and decision support tools relying on them. At 
the same time, a professional market place has opened, where a handful of companies dedi-
cated to wind power forecasting compete for customers, and sometimes collaborate on 
common issues. For example, ENFOR and energy & meteo systems GmbH, two of the play-
ers on the market with some of the longest experience, collaborate in the ANEMOS consor-
tium. Forecast accuracy has increased significantly during the last 25 years, and additional 
forecast types, such as ramp, variability, or icing forecasts, have started to appear.

Short-term prediction consists of many steps. For a forecasting horizon of more than 
4 h ahead, it starts with an NWP model. Further steps are the downscaling of the NWP 
model results to the site, the conversion of the local wind speed to power (these two can 
be done in one step with the right statistical model of the power curve), and upscaling 
from the single wind farms power to a whole region. On all these fronts, improvements 
have been made since the first models. Typical numbers in accuracy are an RMSE of 
about 10%–15% of the installed wind power capacity for a 36 h horizon.
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The main error in a short-term forecasting model stems from the NWP model. One 
current strategy to overcome this error source, and to give an estimate of the uncertainty 
of one particular forecast, is to use ensembles of models, either by using multiple NWP 
models or by using different initial conditions within those.
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6.1  Introduction

Optimal economic operation of power systems has always been a very important 
 subject in the planning and operation of power systems. While the minimization of the 
overall cost considering both the investment cost as well as the operating cost has been 
the foundation of most planning approaches, the minimization of operation cost by 
operating the power system at the minimum marginal cost is the most common basis 
of optimal power system operation. These principles have played an invaluable role in 
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the optimal operation of the traditional power systems so far. However, the basic tenet 
of these principles has been challenged by two fundamental changes in the power 
industry around the world: the development of competitive power markets, and the 
emergence of renewable energy sources.

Incorporation of renewable energy posed some difficulty in the purely cost-based 
approaches, as these sources of energy incurred only capital costs and exhibited very 
little operating cost so that the marginal cost of energy production is virtually zero. 
Therefore, coordinating hydropower generation in the traditional power systems 
required slightly more creative approaches, one common method being to assign the 
cost of the energy replaced by the hydroelectricity as its own cost. In general, hydro-
power has always been included in such a way that the total system cost is minimized. 
Such approaches were adequate as the proportion of renewable resources in the power 
systems remained very low. With the recent emphasis on the development of renewable 
resources, particularly wind power and solar photovoltaic (PV) power to meet the bulk 
of the energy need in the future, the substitution methods described above are not 
expected to remain very effective.

Deregulation of power markets leading to independent generating companies 
(Gencos) participating in the grid operated by the independent system operator (ISO) 
has brought the price as the basis for market operation. The system-wide operation is 
carried out by ISO through market clearing decided on the basis of the bids submitted 
by Gencos. Individual Gencos are responsible for their own unit commitment (UC) and 
generation scheduling according to the market clearing by the ISO.

This chapter describes some studies carried out to investigate price-based (profit-
based) unit commitment (PBUC) and price-based scheduling for Gencos utilizing a 
variety of approaches. The symbols and acronyms used in this chapter are listed below 
for easy reference.

6.1.1  List of Symbols

Symbol	 Definition
δi Cold startup cost
σi Hot startup cost
σj Standard deviation of the forecast market price at time period j ($/MWh)
τi Unit cooling time constant
Πi,s,spot Profit from unit i in the spot market for scenario s
ai, bi, and ci Cost coefficients of unit i
B Bidding blocks (B ∈ 1, 2 . . . NB)
B(HL) Block of contract with length of HL hours
BI Block index of contract B(HL)
Ci (Gi) Cost of producing Gi units of power
FCi Fixed annual cost for the generator unit i
Gi,t Generation in period t by unit i (MWh)
Gi

max  Generation upper limit of unit i
Gi

min Generation lower limit of unit i
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ht Hedging ratio in period t such that 0 ≤ ht ≤ 1
HL Length in hours of a block of contract
i Index of thermal units (i ∈ 1, 2 . . . NT)
j Index for electricity trading time period in one day (j ∈ 1, 2 . . . 48)
J Total system cost
k Index for days in the year (k ∈ 1, 2 . . . 365)
MCP	 Market clearing price ($/MWh)
MUTi Minimum up time of unit i
MDTi Minimum down time of unit i
n Stage number in dynamic programming
N Index for bid steps or blocks (N ∈ 1, 2, 3 in this study)
NT Number of thermal generating units
PG i  Power rating of generator i (MW)
PBB,t Bid price for block B
PBN,j Bid price for step N at time period j ($/MWh)
PDt Power demand at time t
Pent Penalty function at time t
PFt Forward price at time t
PN Number of periods in each stage n
PRj	 Market clearing price at time period j ($/MWh)
PRt,s Price corresponding to scenario s
probs Probability associated with scenario s
PS j  Mean value of forecast market price at time period j
PSt Expected average spot price forecast in period t ($/MWh)
PSs,t Spot price in time t corresponding to scenario s
PSrand

t  Random variable in time t for the next day price
QBB,t Bid quantity for block B
QBN,j	 Bid quantity of bid step N at time period j (MW)
QFt Quantity forward in time t
Rt Reserve requirement in each period ($)
s Index of a scenario (s = 1, 2, . . . S)
S Total number of price scenarios
SDi,t Shutdown cost of unit i in time t
SDevt Standard deviation of PSt

rand in time t
STi,t Startup cost of unit i in time t
t Time period (t ∈ 1, 2, . . . N)
T Total number of periods
Tt i,

off  Time unit i in “off” state at time t
Tt i,

on  Time unit i in “on” state at time t
U Utility function
UBN,j	 	Bid status of bid step N at time period j (1 = successful, 

0 = unsuccessful)
USDi,t  Unit shutdown decision of unit i in time t (1 = shutdown, 0 = no 

shutdown)
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USEP Uniform Singapore energy price
USTi,t Startup decision of unit i in time t (1 = startup, 0 = no startup)
Wi,t Unit status (1 = running, 0 = off) of unit i at time t
Wpen Weight of the penalty function
Yt Sales/purchase in the spot market (MWh)

6.2  Spot Price Modeling

The power industry has been under the process of deregulation around the world 
although the restructuring occurred under different circumstances for different 
 countries. However, the main objective of this exercise has been to establish separate 
entities (companies) for generation (Gencos), transmission (Transcos), and distribu-
tion (Discos) and to create a competitive open market where different market partici-
pants could freely compete. Then the electricity price—the spot price—is determined 
on the basis of the bids by the market participants, which varies every trading period. 
The spot price has become the de	 facto basis for the success of bids by Gencos and 
hence their UC and the generation scheduling. A clear understanding of the price 
behavior and a suitable representation of the price become essential for scheduling of 
Gencos.

6.2.1  Price Uncertainty

Electricity is a special commodity in that supply and demand must be matched instan-
taneously. Its special characteristics in storing, generation, and transmission make its 
prices more volatile than those of many other ordinary commodities. In the short term, 
the nonstorability of electricity often leads to situations where any imbalance of power 
in a system leads to wide fluctuations in the price. As it is, electricity price at peak hours 
is usually much higher. If some unforeseen generator outages occur, the price can rise 
drastically. At the same time, many usual factors such as political uncertainties, fuel 
price fluctuation, physical characteristics of the power system, and so on, also play 
important roles in long-term price variation. Price uncertainty may also be seen as aris-
ing from many well-known factors such as seasonality, day type (weekdays, weekends, 
and holidays), and so on.

Variations of the daily and monthly mean price values in the Singapore market in 
2006 are shown in Figure 6.1. It is clearly seen that the monthly average value varies in a 
much narrower range compared to the daily average price, which may even be consid-
ered irregular and drastic.

Figure 6.2 shows the variation of half-hourly prices in the Singapore market which 
exhibit even higher volatility and spikes. For the year 2006, there are 12 periods when 
the price exceeded $1000/MWh, 8 of them larger than $2000/MWh.

The USEP in 2006 reached its ceiling price of $4500/MWh on 21 December. This 
peak price was caused by the forced outage of two combined cycle gas turbine (CCGT) 
units and an unplanned disruption of gas supply resulting in a power deficiency of 
77.8 MW.
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Although the price fluctuated less in 2007 there was still a high percentage of unusual 
prices, most of which occurred in the first and third quarters of the year. Year 2007 also 
saw 12 periods when the price exceeded $1000/MWh, 7 of them higher than $2000/
MWh. A forced outage of a CCGT and offer changes caused the USEP peak price of 
$4330/MWh on 6 January. On 28 July, the USEP climbed to its ceiling price ($4500/
MWh) after registering a deficit caused by a series of supply crunches—forced outage of 
one CCGT unit, scheduled maintenance of one CCGT unit, with two CCGT units 
remaining out at the same time.
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FIGURE	6.2	 Half-hourly price variations for 2006 and 2007.
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FIGURE	 6.1	 Monthly and daily average electricity price (the uniform Singapore electricity 
price in 2006).
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6.2.2  Statistical Distribution of Price

Market price forecasting techniques are required to support planning and operations 
activities of Gencos. Although it may be possible to qualitatively identify the reasons 
behind certain specific variations in electricity price, it would be extremely difficult to 
model such cause–effect relationships that can be used in price forecasting necessary for 
regular operations planning. Although the historical data shows that the mean values of 
the prices are quite stable and may be forecast with some ease, it is the individual price 
at each interval that becomes important for planning purposes. Therefore, it is found 
preferable to (i) represent the price at any one period as a random variable with a reason-
ably stable mean value, and (ii) find ways to represent the deviations from the mean 
value in a statistical way [1].

Historical USEPs from the Singapore market are used to study the behavior of the 
market price in order to identify possible statistical distributions, and then hypothesis 
tests are formulated and carried out to determine the theoretical distributions that are 
best supported by the historical data.

6.2.2.1  Graphical Analysis

As observed above, the mean value of electricity price is less volatile and less difficult to 
forecast than individual values. However, it is the individual spot price at a particular 
period that plays an important part in optimizing system operation, and hence planning 
studies, of market participants. Thus, it may be worthwhile to explore whether the spot 
price could be represented as a stochastic variable with a mean value so that the indi-
vidual price values could be treated probabilistically. Further, it would be very useful to 
investigate whether the price values follow any particular statistical distribution. Then it 
may be possible to represent the spot price at any one given period probabilistically 
using a few parameters such as the mean and the standard deviation that could be esti-
mated from sample price data.

In the Singapore market, market clearing is done every half an hour, giving 48 spot 
price values in one day. The following analysis attempts to study the stochastic behavior 
of price at individual periods, that is, USEP.

The histogram depicting the spot price values for 2006 and 2007 is shown in 
Figure 6.3. Although the histogram shows a smooth distribution it is quite widespread 
at higher  values. In 2006 [2], about 9% of the USEP was lower than $110/MWh, 87.41% 
of the USEP was between $110 and $200/MWh and about 3.58% of the USEP was greater 
than $200/MWh. In addition, the USEP was less volatile in 2007 [3] than in 2006, for 
only 1.09% of the USEP in 2007 (which is one-third of the USEP in 2006) was higher 
than $200 and a total of 48 trading periods in 2007 (compared to 85 trading periods in 
2006) were observed in which the USEP closed at or above $500/MWh.

Figure 6.4 shows the histogram of the USEP for one particular period. Similar to the 
annual histogram, it also exhibits some extreme values although the majority seems to 
conform to a distinct pattern. It would be very useful if the pattern could be modeled 
statistically. The background theory of statistics used for this purpose is outlined in the 
following section.
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6.2.2.2  Theoretical Distribution Functions

On the basis of the shape of the histogram, three common statistical distributions are 
identified for investigation: normal, lognormal, and Weibull distributions. The latter 
two are indicated by the presence of a definite minimum value and rather extended 
larger values of the price data. These distributions have been used in studies as reported 
earlier and are described by the following probability density functions (PDFs).
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FIGURE	 6.3	 Frequency distribution of monthly and daily electricity price (USEP 2006 and 
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Hypothesis testing will be utilized to investigate whether the historical USEP data 
will reasonably fit any of these statistical distributions. For continuous functions, the 
testing is carried out by checking whether the theoretical cumulative distribution func-
tion agrees well with the sample data. For example, Figure 6.5 shows the cumulative 
distribution of the USEP data shown in Figure 6.3. Three theoretical cumulative distri-
bution functions formed from the parameters computed from the sample data are also 
shown in Figure 6.5. The procedure of hypothesis can indicate whether the sample data 
conforms to any of these theoretical distributions.
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6.2.2.3  Hypothesis Testing

Hypothesis testing is carried out to investigate:

 1. The null hypothesis H0: The price data come from a specific statistical distribution.
 2. The alternative H1: The prices do not come from that distribution.

The three candidate distributions under consideration are normal, lognormal, and 
Weibull distributions. The tests are carried out for all three distributions at two different 
levels of significance (α = 0.05 and α = 0.01). The statistical tool box under MATLAB® is 
utilized for this purpose, which uses the Lilliefors test and the Kolmogorov–Smirnov 
test for hypothesis testing. The Lilliefors test is a two-sided goodness-of-fit test suitable 
when a fully specified null distribution is unknown and its parameters must be esti-
mated. It is specific for the normal family distribution, in this case for the normal and 
lognormal distributions. Similarly, the Kolmogorov–Smirnov test is used for the Weibull 
distribution. Investigations are carried out to determine whether the price data can be 
characterized by any of the candidate distribution functions.

6.2.2.4  Data Analysis

The first attempt is to fit the raw data without any adjustments to the theoretical func-
tions. A graphical analysis of the match between the raw data and the theoretical distri-
butions were studied. A graphical depiction of the fit is shown in Figure 6.6 for periods 
16, 24, and 40, covering the prices at various load levels during the day. The sample for 
each period is 365. It was observed that certain price values (e.g., $3320.7/MWh at period 
24) are clearly outliers that can distort the fit, because of the large standard deviation 
caused by such extreme values.
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FIGURE	6.6	 Three distributions fitting the raw sample data price.
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Therefore, it is felt necessary that such extreme data be filtered out so that the general 
nature of the data may be suitably characterized. In this process, extreme data exceeding 
the average by five standard deviations (USEP ≥ μ ± 5σ) were filtered.

Figure 6.7 depicts the resulting fit between the sample data and the theoretical func-
tions, which show better match between the corresponding curves. It can be observed 
from these figures that the lognormal distribution fits the data best, followed by the 
normal and Weibull curves. The normal curve seems to fit better during peak periods 
whereas the Weibull distribution seems better during off-peak periods. If these observa-
tions could be generalized, it would make them useful for modeling the price behavior 
in planning studies and operations scheduling.

It can be observed from Figure 6.7 that the lognormal and Weibull distributions do 
not fit well in the lower tail of the figures. This discrepancy occurs because the USEP has 
a definite minimum value, but the range of theoretical distribution is (0, +∞). The range 
of USEP data can be easily converted to (0, +∞) by shifting the USEP data to the left by a 
value close to the minimum value (c ≈ USEPmin) observed in the sample. Such a shift 
should improve the performance of the lognormal and Weibull distributions. The result-
ing fit between the USEP data shifted by a value (c ≈ 0.8 × USEPmin) and the theoretical 
distributions is shown in Figure 6.8. It is observed that the lognormal distribution fits 
the data better than the original sample without the shift.

6.2.2.5  Hypothesis Testing on Annual Data

Hypothesis testing was conducted taking into account USEP data conditioned as dis-
cussed above. Table 6.1 shows the result of the test that lists the frequency of acceptance 
of the null hypothesis for different distributions. The lognormal distribution is accepted 
the most to fit the data in both 2006 and 2007. At 5% significance level, the test failed to 
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FIGURE	6.7	 Three distributions fitting the sample data after filtering extreme data.
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reject the null hypothesis in 30 out of 48 (62.5%) periods in 2006 and 28 out of 48 (58.3%) 
periods in 2007. At 1% significance level, the acceptance becomes larger but has less 
statistical power.

The results of the test on the data after the shift c show improvements in terms of the 
acceptance of all the distributions. The lognormal distribution is still found to be the 
best fit with acceptance of the null hypothesis in 36 (75%) periods at 5% significance 
level in 2006. These results, however, do not provide sufficient support for any of the 
distributions.
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FIGURE	6.8	 Three distributions fitting the filtered data after a shift.

TABLE	6.1	 Acceptance of Distribution Functions for Annual Uniform Singapore 
Electricity Price (USEP)

Distribution 
Function α USEP 2006 USEP 2007

Lognormal 0.05 (5%) 30 (62.5%) 28 (58.3%)
Lognormal with shift 36 (75%) 17 (35.4%)
Weibull 3 (6.25%) 0
Weibull with shift 10 (20.8%) 11 (22.9%)
Normal 15 (31.3%) 11 (22.9%)
Lognormal 0.01 (1%) 39 (81.3%) 37 (77.1%)
Lognormal with shift 42 (87.5%) 25 (52.1%)
Weibull 6 (12.5%) 2 (4.2%)
Weibull with shift 18 (37.5%) 19 (39.6%)
Normal 22 (45.8%) 27 (56.3%)
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6.2.2.6  Hypothesis Testing on Monthly Data

The outcomes of the above testing do not provide any definite support for any of the 
theoretical distributions. This may be because the data in different seasons may not 
exhibit the same characteristics. Annual data may contain distinctly different groups of 
data that exhibit different characteristics because of seasonal variations. Therefore, the 
price data are grouped on a monthly basis so that each monthly sample has a sample size 
of 29–31 points.

Seasonal differences in the price data are confirmed by plotting the comparison 
between the average prices of each period on a monthly basis. The average for two differ-
ent months and the annual average are illustrated in Figure 6.9, which shows a distinct 
difference between the various sample averages. Therefore, the monthly samples should 
provide better results if they are tested as separate samples.

The results of the hypothesis testing on the monthly USEP data for four different 
months, conducted exactly in the same fashion as in Section 6.2.2.5, are listed in Table 
6.2. The acceptance of all the distributions improves with the shift. The highest accep-
tance is 47 out of 48 (97.9%) for both the lognormal and Weibull distributions in 
February. The acceptance for different distributions drops in August compared to the 
other three months because of causes beyond the scope of this analysis. (The market suf-
fered from serious generator outages in that month disturbing the market price behav-
ior.) Thus, it is found that various ways of refining the data can influence the acceptance 
of different distributions to various extents; the lognormal distribution stands out as the 
best fit for the data obtained from the Singapore market.

Graphical and statistical analyses have been conducted to determine the possible 
theoretical distributions for electricity price. It was found that the raw price data are not 
amenable to direct statistical representation. However, suitable processing of the histori-
cal data, such as (i) filtering out the extreme data, (ii) adopting suitable shifts to match 
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the range of the theoretical distribution, and (iii) regrouping the data in monthly sam-
ples instead of yearly samples to separate the seasonality, significantly enhances the 
cohesive statistical characteristics of the sample data.

Hypothesis tests are conducted at two different levels of significance and it shows that 
the lognormal distribution is best supported by the historical data, although the Weibull 
and normal distributions also were accepted reasonably well.

6.3  Generation Characteristics

Generation cost characteristics and their representations have been thoroughly 
 investigated for optimizing UC and generation scheduling problems in the operation of 
traditional power system. In the competitive electricity markets, although cost 
 characteristics are no longer the basis for UC and scheduling exercises, they remain very 
important for successful operation and maximization of profits of Gencos. However, the 
diverse types of generators available these days, and the increasing  presence of renew-
able generation, particularly wind and solar generation, have made the treatment of gen-
eration characteristics more complicated. Traditional and renewable generator cost 
characteristics will be discussed in some detail in this section.

6.3.1  Traditional Generator Cost Characteristics

UC problems have usually attempted to minimize the cost of generating units in an elec-
tric power system, especially for traditional fuel cost units considering the following.

6.3.1.1  Operation Cost

The use of operation costs, including running cost, startup cost, shutdown cost, is 
explained in the following equations.

TABLE	6.2	 Acceptance of Distribution Functions for Monthly Uniform Singapore 
Electricity Price

Distribution 
Function α February 2006 May 2006 August 2006 November 2006

Lognormal 0.05 (5%) 37 (77.1%) 25 (52.1%) 13 (27.1%) 36 (75%)
Lognormal with 

shift
43 (89.6%) 37 (77.1%) 35 (72.9%) 45 (93.8%)

Weibull 26 (54.2%) 18 (37.5%) 8 (16.7%) 23 (47.9%)
Weibull with 

shift
33 (68.8%) 26 (54.2%) 31 (64.6%) 31 (64.6%)

Normal 33 (68.8%) 19 (39.6%) 12 (25%) 32 (66.7%)
Lognormal 0.01 (1%) 43 (89.6%) 34 (70.8%) 22 (45.8%) 44 (91.7%)
Lognormal with 

shift
47 (97.9%) 45 (93.8%) 39 (81.3%) 48 (100%)

Weibull 36 (75%) 25 (52.1%) 12 (25%) 37 (77.1%)
Weibull with 

shift
47 (97.9%) 38 (79.2%) 35 (72.9%) 43 (89.6%)

Normal 39 (81.3%) 23 (47.9%) 13 (27.1%) 43 (89.6%)
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Running	Cost:

 C G a b G c Gi i i i i i i( ) = + + 2
 (6.4)

Here, Ci (Gi) is the unit cost characteristic of the generating units, which is a function 
of Gi and is derived from heat-rate characteristics.

Startup	Cost:
Either an exponential function or a two-step function is used to represent the startup 

cost of the generator.
Exponential	Startup	Function:
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Two-step	Startup	Function:
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Here, τi is the number of hours that it takes for the boiler to cool down.
Shutdown	Cost:
Shutdown cost is usually given a constant value for each unit.

6.3.1.2  Marginal Cost Analysis

Occasionally, small Gencos in the competitive deregulated market are assumed to be 
price-takers, that is, their generation bid cannot influence the market price. The mar-
ginal cost of the generating units therefore is involved in the scheduling problem.

The scheduling task for a price-taker Genco would be straightforward if the future 
market prices were known. The optimal generation at a particular moment is simply 
where the incremental generation cost (marginal cost) equals the market price. 
Nevertheless, the electricity market is more likely to be an oligopoly market and the mar-
ket price cannot be precisely predicted. The marginal cost bidding in this environment 
for the small Genco who plays as a price-taker may not be the optimal scheme. The bid 
at marginal cost may be driven out of competition by bids from bigger generators with 
market power. Scheduling based on marginal cost bidding is investigated in Section 6.5.2, 
as a comparison.

6.3.1.3  Screening Curve Analysis

The screening curve analysis has been used to establish the relative economic merits of 
different generator types that can be utilized to determine the optimal generation com-
bination [4]. Such analyses not only consider the running cost of a generation unit but 
also include the capital cost that plays an important role in the long-term system plan-
ning. The screening curve will enable the Genco to bid in the most economical way such 
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that the generating units will run with capacity factors in the range where they are the 
most efficient units.

Figure 6.10 shows a typical screening curve traditionally used to illustrate generation 
mix concepts. This figure shows that the coal unit with a very high capital cost and a low 
operation cost would be the cheapest generator when operated with a capacity factor 
larger than C2. Similarly, the gas unit with a low capital cost but a high fuel cost would 
be the most economical unit only if it has to be operated with a capacity factor less than 
C1. In the same way, if the capacity factor for a planning plant stays in the interval 
between C1 and C2, then the oil unit will be the most economical unit. This observation 
indicates an effective way to specify the bid for the generation unit which is to maintain 
the running time of each unit within its economical capacity factor range, which can be 
expected to keep generation cost at its minimum.

6.3.2  Renewable Generation Characteristics

The growth of renewable generation, particularly wind and solar generation, has been 
significant in recent years. The participation of renewable generation in the deregulated 
market is also a challenge due to the nondispatchable and unpredictable nature of gen-
eration. Therefore, it is very important to investigate the characteristics of renewable 
generation, such as wind and solar generation, in order to become competitive and sur-
vive in the deregulated market.

6.3.2.1  Wind Generation Behavior

Wind power generators cannot be dispatched like those conventional generators. This 
poses problems for generation schedules. High penetration of wind generation in elec-
tric power industries poses new challenges in the short-term market and for system 
operators, mainly due to the variability of wind. Thus, it is quite important to effi-
ciently and economically integrate wind generation into the competitive electricity 
market.
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FIGURE	6.10	 Screening curves of generation units.
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The Genco participating in an electricity market needs to submit supply bids and to 
commit to the delivery of an agreed amount of energy in a given period. If the actual 
delivered energy differs from the agreed amount, the system operator has to change the 
schedules of other generators in order to maintain the balance between supply and 
demand. The cost of this rescheduling must be paid by those that cause it; therefore, 
penalty or imbalance prices will be charged to the producers of wind power with short 
fall. As the power produced by a wind farm depends heavily on the fluctuation of wind, 
unplanned deviations of a wind farm output may increase operating costs for the elec-
tricity system, because of increased requirements of primary reserves, and add potential 
risks to the reliability level.

6.3.2.1.1  Imbalance Cost Characteristics

The major difference between the bids for a traditional generator and wind energy is the 
real dispatchable power. Failure at the bidding auction level does not entail penalties, 
whereas failure at wind power availability will incur penalty. The imbalance cost that 
occurs in the process of scheduling wind power generation will be introduced in this 
section.

For any trading period, the price-taker needs to propose a level of contracted energy 
QBj. The profit of this Genco with the submission of the amount of energy QBj but actu-
ally generating Qj can be formulated as

 
Π j j jQB P= −R C Qimj

( )
 

(6.7)

where PRj is the market clearing price and C(Qimj )	is the imbalance cost on the regula-
tion market. The imbalance Qimj	can be defined as
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and, consequently, C(Qimj )	can be given by
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where Qj is the wind power actually generated by the wind farm at period j. PPj and Pcj 
indicate positive and negative imbalance prices, respectively. It should be noted that 
these two types of imbalance prices will be determined by the particular regulation 
mechanism. In some specific electricity market, they simply equal a certain proportion 
of the MCP: for instance, in Spain, these two categories of regulation prices could be 
PPj = (1 + π)PRj and Pcj = (1 − π)PRj. More generally, the imbalance prices are asymmet-
ric and come from a more complex function of the spot price. In the regulation mecha-
nism of NordPool, they may even depend on the sign of the imbalance as a whole. 
Therefore, the market participants will not be penalized if they offset the system imbal-
ance. The imbalance cost here will be taken as a parameter so as to get the sensitivities of 
the revenues with respect to the imbalance deficiency.
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6.3.2.1.2  Probabilistic Representation of Wind Generation

To analyze the characteristics of wind power generation, it is important to model the 
behavior of wind speed. The Weibull distribution function has been widely used to char-
acterize the uncertain nature of wind speed. The PDF of wind speed is given by
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where v is the wind speed, k is the shape parameter, and c is the scale parameter. The 
Weibull distribution function with k = 2 is called the Rayleigh distribution.

If the wind speed is assumed to come from a Weibull distribution, it is then important 
to transform the wind speed distribution to a wind power distribution. As the wind 
speed can be viewed as a random variable, the output wind power generation may also 
be regarded as a random variable through the transformation. The output of wind tur-
bines can be stated as follows:
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where Q is the output power.
Equation 6.11 shows the relationship between the hourly wind speed and the output 

power. The power output is zero for speed below the cut-in wind speed. In the interval of 
wind speed between the cut-in and saturation speed, the maximum coefficient power 
can be obtained using the wind power equation. The output power remains at the maxi-
mum value for the wind speed in the interval between vsatur and vcut-out, where the upper 
limit is the cut-out point. For wind speed larger than the cut-out point, for safety, no 
power is generated and therefore remains zero.

Considering the statistical nature of wind speed, the transformation can be accom-
plished in the following manner:
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The probability of the wind speed being smaller than the cut-in speed or larger than 
the cut-out speed can be expressed as follows:

 Prob ecut-out cut-out
/cut-out( ) ( ) ( )v v F v v C k≤ = − = −1  (6.13)

 Prob ecut-in cut-in
cut-in( ) ( ) ( / )v v F v v C k≤ = = − −1  (6.14)
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The probability of the wind speed, v, being greater than vsatur but lower than vcut-out, can 
be represented as

 

Prob satur cut-out cut-out satur

satur

( ) ( ) ( )
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v v v F v F v
v C
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= −e kk kv C− −e ( / )cut-out  (6.15)

Thus, the PDF of the wind speed can be utilized to derive the PDF of the correspond-
ing output power. It is noted that the probability of the power being zero coincides with 
the probability of the wind speed being lower than the cut-in point and higher than the 
cut-out point, which can be calculated as follows:

 Prob e ecut-out cut-in /( ) ( / ) ( )P v C v Ck k= = + −− −0 1  (6.16)

Accordingly, the probability of the wind power generation being equal to Pmax equals 
the probability of the wind speed being higher than vsatur but lower than vcut-out, which 
has been expressed in Equation 6.15.

Therefore, the probability of the output power can be expressed in the following 
mixed PDF equation that is derived from the PDF of wind speed:
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where c ACt v= 1/2 satur, δ(Q) is the impulse function, and Q is the wind power output.
The forecast of wind speed as well as wind power within a short time lag is more accu-

rate and the variance of the distribution is smaller than those forecasts conducted for a 
longer time lag. In this chapter, the wind power production is modeled using the PDF 
expressed in Equation 6.17.

6.3.2.2  PV Power Behavior

The growth of PV electricity generation has been significant in recent years. However, 
the cost of electricity generated by PV power remains high and a subsidy is usually pro-
vided to PV suppliers. Currently, PV electricity is commonly directly sold back to the 
energy supplier at a fixed market price and subsidy. Another disadvantage of PV power 
is that it depends on irradiation which is unpredictable. The probability of PV power not 
being able to deliver adequately as scheduled is obvious, and, consequently, related pen-
alty costs are incurred when trading PV electricity in power markets.

A simplified model could be applied for PV power to participate in the energy and 
imbalance system that involves penalty cost as shown:

 
Π j j j j j imP k Pc C
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 (6.18)
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where C(Q) is the cost function of PV power to produce Q and C(Qim,j) is the penalty cost 
in the imbalance market.

As PV irradiation cannot be exactly predicted, the penalty cost will be applied to the 
nondelivered energy, which is their obligation. The statistical distributions could be 
assumed to model the deployment of the imbalance capacity. Joining the market may 
be more beneficial for PV power generation than to sell at fixed prices if the produced 
electricity is sufficient.

6.4  Price-Based (Profit-Based) Unit Commitment

The UC problem in traditional power systems used to be solved for cost minimization. 
Zhai et al. [5] have proposed a new method that combines the concepts of augmented 
Lagrangian relaxation and surrogate subgradient to solve the UC problem with identical 
units. Senjyu et al. [6] proposed a fast, extended priority list method for the UC problem 
where a technique for getting a better initial solution rapidly has been developed.

However, in deregulated markets, Gencos are usually entities owning generation 
resources and competing with other participants with the sole objective of maximizing 
the profits without concerns about the system cost [7]. In the deregulated environment, 
Gencos have no more obligations to serve the full demand which allows the UC schedule 
to be more flexible. Under softer demand constraints, a Genco may prefer PBUC gener-
ating units to maximize profit. In this line, Richter and Sheble [8] have proposed a 
genetic algorithm (GA) for the PBUC problem, which considers softer demand con-
straints and allocates fixed and transitional costs to scheduled hours. Arroyo and Conejo 
[9] propose a 0/1 mixed integer linear programming to maximize the unit profit by sell-
ing both energy and spinning reserve in the spot market.

6.4.1  PBUC Problem Formulation

In general, by modifying the UC problem through changing the demand constraints 
and altering objective function from cost minimization to profit maximization [10], the 
PBUC problem based on forecast market price can be represented as follows:

Objective	Function:
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And then the objective function is solved with the following constraints:
Rated	Maximum	and	Minimum	Capacities:
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Demand	Constraint:
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It is worth noting that the demand in Equation 6.22 is not the system demand but the 
quantity a producer is assigned to produce on the basis of the bids submitted and the 
market cleared. The decision to commit a generating unit is price-based and the sched-
ules are allowed to be more flexible.

6.4.2  Solution Methodology

In the traditional economic dispatch, all marginal units have the same incremental 
energy cost (system lambda) at the solution, but, in PBUC, ideally the marginal units 
incremental cost should be equal to that of the marginal price. As it is profitable to pro-
duce as long as the cost of production is lower than the revenue obtained by selling the 
quantity produced, the average cost is utilized as the basis of enumerating the best pos-
sible combination for the operation of the generating units. In this study, the proposed 
methods are applied to four different sets of data. The comparison studies and analysis 
are then conducted on the basis of these study results.

6.4.2.1  Dynamic Programming

The solution is obtained using dynamic programming (Figure 6.11) in coordination 
with a selective enumeration method (described in Section 6.4.2.2) and nonlinear 
programming.
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FIGURE	6.11	 Dynamic programming.
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The stages of dynamic programming are the nodes and the lines joining the nodes 
represent time periods. The state variables associated with the individual stages are 
T Ti t i t, ,,on off  and Wi,t, which are derived from the selective enumeration process described in 
Section 6.4.2.2.

The decision variable, Gn, is obtained by treating the input state, Wn−1, as a parameter. 
Hence, the cost at each stage is obtained by solving subproblem 6.24 for constraints 6.20 
and system demand constraints 6.23:

Demand	Balance:

 
G PDi t

i

NT
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=
∑ =

1  
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(6.24)

where t ∈ 1, 2, . . . N.
With Wi,t and Wi,t−1 known, STi,t and SDi,t can be treated as constant and hence the 

problem reduces to
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i

NT
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(6.25)

This simple quadratic problem can be solved by quadratic/nonlinear programming 
methods.

The decision functions for each stage, 1, 2, . . . N, can be represented by the forward 
recursion formula

 f G Ji1 1 1( ) min, =  (6.26)

 f G J F G t Nt i t t t i t( ) min( ( )) ,, ,= + =− −1 1 2 3for   (6.27)

where F ft t− −=1 1
min.

However, at each stage, two or more least-cost options obtained from decision func-
tions corresponding to each node are chosen. For example, for node G at stage 2, as 
shown in Figure 6.11, both cost options representing paths A–B–G and A–E–G are 
stored. This is required to account for T Ti t

on
i t
off

, ,, , MUTi, and MDTi of units i, which will 
have an effect on the cost function at future stages. Finally, to decrease the dimensional-
ity of the problem, not all but best few least-cost nodes are selected at the end of each 
stage. The overall process is outlined in the flow chart in Figure 6.12.
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Solve the sub problem for time period t with
constraints (5) and (7) for all generating units

For all time Periods t=1…NT

For all stored On/Off Status

Check MUT / MDT to determine must on/off units

Load On/Off Status at t-1, Up/Dowm Time at t-1,
Demand at t-1, Demand at t

Find Unit that can be turned on/off

Is
Load at t<=Load at t-1

Find max number of units
possible to turn off based on

most expensive units that
can be turned off

Find minimum number of
units possible to turn on
based on most expensive

units that can be turned on

Add a certain number to it and enumerate in the vicinity of
the maximum/minimum number obtained

If load > Demand + Reserve, Store

Yes No

For all selected on/off Status from above

Update W, UST,
USD,ST,SD

Solve the Forward Dynamic Program and Store 2 best least
cost option for each on/off status

Store Best N possible on/off status

Store results(On/Off status, up/down time, cost,  power
generated by each unit)

Start

End

Sort in ascending order according to
minimum Average cost (16)

FIGURE	6.12	 Flow chart showing the solution procedure.
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6.4.2.2  Selective Enumeration Method

A selective enumeration method is proposed to solve this UC problem. The decision to 
commit or not to commit a unit is made on the basis of the cost characteristics of the 
units available and the heuristics involved is explained in the following sections with the 
help of Figure 6.13.

6.4.2.2.1  Average Cost at Maximum Output

The orders in which the units can be turned on/off are stacked on the basis of increasing/
decreasing average cost. The minimum average cost is calculated considering both the 
average and startup costs for each unit within the limits of rated maximum and mini-
mum capacities as shown:

 
min ( )AC C G

G
ST

G MUT
i i

i

i

i i
= +

 
(6.28)

The importance of MUTi is to reduce the effect of startup cost on the basis of the mini-
mum number of hours it should operate if the unit is turned on. The treatment of cost in 
this way makes sure that a unit with low running cost but high starting cost will not be 
left out from the selective enumeration process.

6.4.2.2.2  Selective Enumeration

Selective enumeration is adopted following an increase or decrease in demand in each 
period. Figure 6.13 shows an example of where the demand has increased from period 
t − 1 to t. The arrow pointing to unit C suggests that, on the basis of unit minimum 
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average costs, at least three units, that is, A, B, and C, should be turned on to meet the 
increased demand.

Consider the case where more units are selected, say D and E. This allows for the 
difference in the startup costs and marginal cost characteristics of the different units, 
which may affect overall costs The number of extra units considered are usually prob-
lem-dependent and can be chosen depending on the cost characteristics and the maxi-
mum generation capacity of the units under consideration. The units are then 
enumerated in different combinations.

Even fewer than the minimum required number of units (e.g., two units in this case) 
can be considered particularly if the next unit being considered is a very large unit. On 
the other hand, all five units (A, B, C, D, and E) may be considered. Moreover, to allow 
for expensive units that could not have been turned off in the previous periods because 
of MUT constraints, a combination of a few units being turned off, say unit I and J, may 
also be taken into account.

6.4.2.2.3  Filtering Process

From all the enumerated combinations, the ones not satisfying the demand constraint 
are first discarded. For the remaining, the minimum average cost is calculated and 
sorted out in ascending order of cost. As the minimum average costs considered repre-
sent a very close approximation of the actual costs, the best few combinations are chosen 
for the remaining calculations. Thus, the best among the combinations chosen are 
obtained. In the case under study, results for the 10 unit systems were obtained by con-
sidering only the best 5 combinations, whereas for the 40 and 110 unit systems the best 
20 combinations were considered.

The method described above is detailed in the bold rectangular box in Figure 6.12. 
For the profit–maximizing objective, the same method described above is used with dif-
ferent objective functions.

6.4.2.3  Genetic Algorithms

GAs are adaptive search techniques based on the principles and mechanisms of natu-
ral selection and the “survival of the fittest” from natural evolution [8,11]. Gas belongs 
to the class of probabilistic algorithms as they combine elements of directed search 
and stochastic search and hence are more robust than existing directed search 
methods.

The increasing use of GAs to solve mixed-integer nonlinear problems can be 
seen from its application in solving UC problems [12,13]. The use of GA is common 
when the problem is complex and the solution is time-consuming. The choice of GA is 
based on the performance and flexibility with respect to solution procedure, solu-
tion  time, and the need for Gencos to adapt to the changing market conditions. 
Moreover, the use of UC decisions from PBUC for the expected mean price obtained 
from the authors’ previous work [14,15] provided highly fit schemas in the initializa-
tion stage of GA. This improved the performance of GA to a great extent thereby pro-
viding good solutions in a reasonable time frame. In addition, the advantage of this 
method is that a group of good UC schedules for the objective function can be 
obtained.
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For a large Monte Carlo sample,S, Equation 6.19 can be rewritten as
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Equation 6.29 along with constraints 6.20 through 6.22 gives the optimal quantity to 
generate in the spot market for a risk-neutral Genco.

In GA terminology, the maximized profit, as shown in Equation 6.29, is the fitness 
function. To deal with the MUT/MDT constraints, a penalty function is introduced to 
penalize for any violations in constraints. This function helps to produce feasible solu-
tions by making sure that nonfeasible solutions are assigned lower fitness than that of 
feasible solutions and is derived in the following way:
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In the above function, the violations of constraints, which are far from the feasibility 
boundary, are assigned higher penalties. Moreover, weight of the penalty function, 
Wpen, is set to a low value in the initial generations and increases steadily with the num-
ber of generations. This ensures that the large search space is covered in the initial gen-
erations to reach the optimal region and the higher penalty function in later generations 
helps in fine-tuning the optimal solution while satisfying all the constraints. Now the 
objective function for GAs can be written as
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The GA consists of the following stages:
Initialization: The sequences of stored UC decisions (best 10) are obtained from the 

method described in Reference [15] for the forecast price. As these are the sequences 
fulfilling all the constraints associated with the unit, it can be said that these form highly 
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fit schemas. These building blocks for the GA problem will perform computations by 
recombining among each other to form better strings in each generation.

Reproduction,	Crossover,	and	Mutation: Stochastic universal sampling, two-point 
crossover, and nondynamic mutation are used for reproduction, crossover, and muta-
tion, respectively. The probability of crossover and mutation is set at 0.7 and 0.1, 
respectively. Moreover, to prevent premature convergence, linear fitness scaling with 
a scaling parameter of 2 is used.

Replacement: An elitist strategy is used as the replacement method in each generation.
Objective	Function: Here each chromosome in the population represents a candidate 

solution, that is, a possible generation schedule. This means that W, UST, and USD in 
Equation 6.30 are known for each time period for each candidate solution and hence ST, 
SD, and Pen can be treated as constants. Therefore, the last three terms in Equation 6.30 
can be calculated separately for all the chromosomes in the population.

6.4.3  Price-Based Self-Commitment Under PBUC

In markets such as the New Zealand energy market, UC is the sole responsibility of 
individual Gencos. For this type of market, PBUC gives optimal dispatch for the forecast 
price if it can be achieved through bidding. Hence, the information on optimal produc-
tion obtained is still valuable when making bidding strategies. These strategies may, 
however, include uncertainty in price, the behavior of other participants, and risk 
averseness of the Genco. Moreover, a cumulative bid for all the units owned by a Genco 
may also be submitted to the pool. However, only after the market is cleared will each 
Genco know their individual demand in the spot market. Now, based on these demands, 
the Gencos can again carry out self-commitment to obtain optimal decisions when the 
demand constraints become relevant for competitive Gencos. This makes the UC simi-
lar to the traditional power systems where the objective is to minimize system cost to 
meet system demand.

6.4.3.1  Self-Commitment for Individual Generating Units

Solving the objective function of PBUC will provide an optimal power scheduling deci-
sion corresponding to each decision period for the forecast price, as shown in Figure 6.14. 
The area within the dotted lines in the figure corresponds to the range of marginal cost 
of the unit between its capacity limits. It can be seen that price being equal to marginal 
cost (period 7–14) does not necessarily mean that turning the units on in those periods 
are profitable because other factors like startup/shutdown costs and up/down time con-
straints also have effect on the decisions being made. The UC decisions obtained for each 
unit in this way is the optimal solution for the unit in view of the forecast spot price. The 
power schedule, as shown in Figure 6.14, can be considered the target schedule for a unit 
of the Genco and hence provides information for the Genco to make bidding strategies 
accordingly to obtain the targets.

PBUC for individual units described in Section 6.4.2.2 gives the best commitment 
decision for a particular price for individual units. Now, when PBUC is solved for the 
same set of prices for all the units owned by a Genco and summed up optimal quantities 
cleared, a total quantity for the Genco at that price is obtained. This means that for that 
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cumulative quantity, the UC decision is optimal. However, the demand of Gencos is 
determined by the pool and can be quite different from the target depending on their 
bidding strategies and various other reasons like system security, reserve requirements, 
and so on, to be met by the ISO. In this case, PBUC solution considering individual gen-
erating units would not be optimal and hence needs adjustment to meet the actual 
demand. Here, the problem is resolved by adjusting (increasing or decreasing) the price 
fictitiously in each period until the demand condition is satisfied. This result of using 
this adjustment in price on the optimal dispatch is seen in Figure 6.15. This is the same 
example as in Figure 6.14, but for the increased price (shown in bold) for period 9. The 
effect on dispatch can be seen in the changes in periods 9–11.

6.4.3.2  Self-Commitment for Groups of Generating Units

The same technique can be applied for committing a group of units to meet the demand 
target. An iterative method is proposed where price in different periods is subsequently 
increased or decreased so that the units committed also increase or decrease, respec-
tively, until the demand constraint is satisfied. This method, which uses price as a guide-
line for solving the self-commitment problem with demand constraint, is explained 
with the help of the following steps:

BEGIN
Step	 1: Initialize the price for t ∈ 1, . . . N to the expected average spot price 

 forecast PSt.
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FIGURE	6.14	 Power dispatch for single unit for forecast price.
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Step	2: Begin iteration.
Step	3: For the price PSt, solve PBUC described in Section 6.5 to obtain Wi,t andGi,t.
Step	4: For all t, t ∈ 1, . . . N
If ∑ = <i i t tG1

NT PD, , then PSt = PSt + ΔPS.
Else if ∑ >=i

NT
i t tG PD1 ,
max , then PSt = PSt − ΔPS.

Else PSt = PSt.
Here, the change in price for the given conditions prevents over-scheduling and 

under-scheduling, which increases the cost of production and violates the 
demand constraint, respectively.

Step	5: For the Wi,t obtained, solve the objective function, which is now a simple 
quadratic equation and can be solved using the “quadprog” function for the 
following demand constraint:
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1  
(6.31)

Step	6: Store the optimal solution obtained so far.
Step	7: After every two iterations, set

PSt = max(PSt−1, PSt−2) and ΔPS = ΔPS/2.
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FIGURE	6.15	 Power dispatch for change in price.
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Here, PSt is set so that the UC decision obtained using this price guarantees the 
fulfillment of demand constraints after every iteration. In addition, reducing 
the amount by which the price is changed (ΔPS) helps in fine-tuning the sched-
uling decisions in subsequent iterations to reach the optimal solution.

Step	8: Repeat steps 3–7 until the maximum number of iteration is reached.
END

The proposed procedure was implemented in different systems reported in the litera-
ture, and Figure 6.16 shows the effect of this self-commitment method on the target 
dispatch obtained through PBUC.

The solid lines in the graphs indicate the target commitment plan for the forecast 
price obtained from PBUC for a Genco owning a 10-unit system given for a 12-h period. 
Now, let us assume that the total power cleared by ISO for the Genco is shown by the 
dotted lines in the topmost graph in Figure 6.16. Now, self-commitment of the units as 
described above suggests an optimal power dispatch schedule for the 10 units as shown 
by dotted lines in the figure.

6.4.3.3  Consideration of Price Uncertainty in Bidding Under PBUC

Stochastic models for constructing bids have been developed by Baillo et al. [16] and 
Plazas et al.[17]. The models developed in view of the day-ahead market and adjustment 
markets are solved using bender decomposition in a two-stage stochastic decision pro-
cess in the study by Baillo et al. [16] and mixed integer linear programming in the study 
by Plazas et al. [17]. However, these models cannot be optimal in hour-ahead markets 
like the National Electricity Market of Singapore, where the gate closure time is shorter 
and Genco commitment decisions can respond quickly to market conditions.

Bidding for power producers with low generation cost units can be done to ensure 
that the units are dispatched each hour. Similarly, for units with very high cost, the pro-
ducers prefer not to dispatch them. However, for marginal or near-marginal units, the 
producers should consider, among options of committing the unit to run, keeping it in 
banking mode or shutting down the unit completely. To make decisions on bid curves 
that maximize profits, two factors must be considered: the uncertainty in price, which 
has direct impact on profit, and PBUC, which takes into consideration time-dependent 
unit constraints such as MUT/MDT, and so on, while maximizing profits [18].

Some reasonable assumptions are made in the development of bidding strategies.

 i. While making a price quantity bid, the Gencos choice of quantity is fixed in 
blocks, that is, if Gencos bid in 5 MWh blocks of quantity, then the quantity bids 
can be, for example 50, 55, 60 . . . 85, and so on, in intervals of 5.

 ii. Similarly, price bids are also limited to intervals of 0.25, for example, 10.25, 10.50, 
10.75, . . . and so on.

6.4.3.3.1  Price Quantity Relationship

Using the method for solving PBUC as described in Section 6.4.3, optimal profit and 
quantity corresponding to each price scenario can be obtained. The price, quantity, and 
profit for each of the 2500 scenarios obtained from PBUC are sorted out in ascending 
order of optimal quantity dispatch as required for a stepwise nondecreasing bid curve. 
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Figures 6.17 and 6.18 and Table 6.3 are outcomes from a sample implementation carried 
out to observe the price–quantity relationship for a marginal generation unit. The fol-
lowing observations were made:

 i. The solution of generation quantity from PBUC results in a number of discrete 
quantities. For example, in the sample considered, 10 discrete quantities are 
obtained for all price scenarios, as can be seen from Figure 6.17 and Table 6.3.

 ii. With the increase in quantity dispatched it can be seen that the price range for 
which the quantity is dispatched has, in general, an upward slope, that is, more 
quantities are dispatched for higher prices.

Figure 6.17 is a typical graph for a period, showing the relationship between price and 
quantity. Quantities shown in the x-axis are the discrete values of quantities obtained 
for a period while solving PBUC for 2500 price scenarios. The figure shows the range of 
price at which those quantities give optimal solutions. For instance, PBUC gives optimal 
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profit with a quantity of 0 MWh in several scenarios when the price in the period is 
between $8.5 and $14.5. In the same manner, for a quantity of 55 MWh, optimal profit 
is obtained when the price in the period is between $8.5 and $12.25. From the character-
istics of the unit and optimal solution from PBUC indicated in Figure 6.17, it can be 
deduced that:

 i. Above a certain maximum price ($14.25 in this case), it is in the interest of Gencos 
to bid maximum capacity, that is, 185 MWh.

 ii. The main difficulty here is, however, to choose the price below which to turn the 
units “off,” that is, the decision between 0 and 55 MWh. This is very important 
because this is where the intertemporal constraints (MUT/MDT) become binding 
and the decision in one period is interlinked with the decision in other periods.

 iii. Once the above decisions are made the other price–quantity relationships are 
mostly straightforward as they follow the cost characteristics of the unit.

Figure 6.18 shows cumulative profit corresponding to various quantities. To obtain 
the cumulative profit, the ratio of profit (obtained from PBUC) in one scenario to the 
maximum profit in all the price scenarios is first calculated. These profit ratios are aggre-
gated for each set of discrete quantities to obtain the cumulative profit. For example, 
cumulative profit obtained for the optimal quantity as zero for prices between $8.5 and 
$14.5 is 333.42. This may seem to suggest that the decision to bid zero is a favorable deci-
sion for a price less than $14.5, but is not so as will be explained next.

6.4.3.3.2  Building Bid Curve

After identifying the price–quantity relationship, a stepwise nondecreasing price–
quantity curve will be developed. From Figure 6.17 it can be seen that, when the price 
scenarios are treated individually to solve PBUC, similar prices at different scenarios 
tend to give different optimal quantities. Hence, to obtain the bid curve, profit informa-
tion corresponding to each price and quantity, similar to Figure 6.18, is used. Table 6.3 
shows the price distribution obtained based on 2500 price scenarios. These price 
 intervals are first categorized in an ascending order of intervals (e.g., <8.50, 8.50 to 

TABLE	6.3	 Price Distribution

Price ($/MWh)

Quantity (MWh) From To

0 8.50 14.50
55 8.50 12.25
60 12.50 12.50
80 12.75 12.75
100 13.00 13.00
120 13.25 13.25
135 13.50 13.50
155 13.75 13.75
175 14.00 14.00
185 14.25 18.00
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<10.50, 12.25 to <12.50, 12.5 to <12.75, etc.) so that the best quantity corresponding to 
each of those periods can be obtained as demanded by the bidding curve.

However, before making decisions on all bid quantities, the price at which to start the 
unit or, in other words, the price below which to put the unit “off” should be established. 
The process for this adopted here is shown in Figure 6.19. The optimal power corre-
sponding to each scenario is considered to be either “on” (≥55 MWh, i.e., greater than 
generation lower limit Gi

min) or “off” (=0 MWh). Initially, small price intervals between 
maximum and minimum price are considered and the status (“on” or “off”) that gives 
maximum cumulative profit for each interval is calculated. As the bid curves are 
required to be stepwise nondecreasing price–quantity curves, it can be seen that itera-
tion 1 in Figure 6.19 for a small price interval does not fulfill this condition; that is, 
condition QBB‑1 ≤ QBB is not satisfied for all bidding blocks B and B − 1(∀B ∈ 1,2, . . . 
NB). Hence, price intervals are increased (at the rate in accordance with the second 
assumption at the beginning of Section 6.4, i.e., $0.25) iteratively until the condition is 
satisfied. In the sample considered, it can be seen that the condition is satisfied in the 
third iteration, and hence for the price range shown by the arrow in iteration 3, the unit 
is turned “off.” In this way, PB1 is derived.

To derive QBB,t corresponding to each price interval, profit weight, Π s B
wt
, , for each price 

scenario is calculated as the ratio of the profit corresponding to a scenario in the price 
range to the sum of profits corresponding to all the scenarios in the range:
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Subsequently, QBB,t is calculated as
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The effect of the quantity chosen for bidding in this way by considering profit weights 
as the basis of making decision on bid quantity is expected to increase the overall profit 
under uncertainty.

Figure 6.20 shows the cumulative profit when the price range is divided into different 
price intervals. It can be seen that the decision to turn the units “off” (0 MWh) has more 
cumulative profit for a price less than $10.5/MWh. Similarly, from 10.50 to less than 
$12.50/MWh, a quantity of 55 MWh has a higher cumulative profit. In this example, if 
the market allows a 10-step bid function, then 10 price bids corresponding to 10 discrete 
quantities, as shown in Figure 6.20, are expected to give the optimal bid. These price 
intervals correspond to PBB,t and can be interpreted as PB1,t = $10.25 for 0 MWh, 
PB2,t = $12.25 for 55 MWh, and so on.

However, if the market allows less bid steps, then the decisions on the minimum price 
to start (i.e., $10.5 for 55 MWh) and the price above which maximum quantity is dis-
patched (i.e., $14.25 and above for 185 MWh) are first made. From the remaining price 
range, for instance, $10.50–$14.25 in the example, the quantities having higher profit 
weight are chosen.

In this way, a bid curve, as shown in Figure 6.21, which is a stepwise nondecreasing 
curve, can be obtained which considers multiple price scenarios based on the profit 
weight corresponding to each scenario.

6.5  Price-Based Scheduling for Gencos

Generation scheduling and dispatch are determined by individual power producers’ bids 
in a deregulated power market. In addition to the status of the unit, a bid includes infor-
mation on how much power, at which price, at what time, and at which stage the Genco is 
willing to sell. Thus, the bid curves need to be determined with the objective of maximiz-
ing profit in the competing process with other participants. This calls for added emphasis 
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on the influencing factors such as price uncertainty, financial instruments, and so on. 
Different generation scheduling methodologies will be described in this section.

6.5.1  Stochastic Self-Scheduling Technique

The benefits obtained by a power producer will depend largely on how effectively it can 
incorporate the variation of the market price in its generation scheduling. A stochastic 
scheduling technique is presented in this section for maximizing a producer’s benefit 
considering the stochastic nature of power price. Two approaches to the solution, 
namely, two-stage and multistage stochastic methods, are presented that accommodate 
the features of the day-ahead and hour-ahead power markets, respectively.

Implementation of the technique is illustrated by applying the technique to scheduling 
by a power producer with 11 generators in two different seasons. Price data from a real 
system have been used for price forecasting and the formation of a price scenario tree. The 
result indicates that this stochastic self-scheduling technique is particularly effective 
when the uncertainty in the price is high and the price forecast is not very accurate [19].

6.5.1.1  Price Forecast and Formation of Price Scenarios

A price forecast is used to estimate prices (expected values) for the entire scheduling 
period of 24 h along with their standard deviation. The forecast is used to identify a 
number of likely price scenarios at each hour along with the likelihoods of their occur-
rences. Three scenarios (normal, high, and low price) are used in this study. A price 
scenario tree is then formed for the 24-h period, as shown in Figure 6.22. The task of 
stochastic scheduling is to determine a path in this tree from hour 1 to hour 24 in order 
to maximize the expected value of the benefits over the entire 24-h period. The optimi-
zation problem will be solved as a problem coupled for 24 h. This will yield the optimal 
UC for each hour on the basis of the price forecast for 24 h. Then, the optimal output at 
each hour is determined from the more precise estimate price for the next hour.
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The autoregressive integrated moving average (ARIMA) model is utilized to forecast 
the price on the basis of the recent actual historical data. The variances can also be 
obtained in addition to the mean values of the price for every forecast interval. This 
method is very suitable to form different price scenarios based on the forecast expected 
prices and standard deviations obtained from the corresponding variances. In the 
ARIMA model, the seasonal part of 1 week (168 h) is first considered as the electricity 
prices are inherently seasoned by weeks. In addition, the time difference is considered 
based on the feature of the historical data.

Using the ARIMA model, the variances σi
2  along with expected values yi of the fore-

cast prices are obtained for every forecast interval i. Generally, a larger number of dis-
crete price scenarios would yield more accurate results, but with additional complexity 
of the problem and heavier computational tasks. In this section, for each hour, three 
discrete price states, high, normal, and low prices, with probabilities of whl, (1–2whl), and 
whl, respectively, are used. The volatility of the market price is represented by the value 
of whl. The values of discrete prices for a given whl can be easily computed and Table 6.4 
shows these values for whl = 0.3.

It is noted that, as only three discrete prices are obtained for each hour, the infeasible 
task of exponential computation of the 24th power is avoided. Other ways for discretiza-
tion and scenario generation are possible.

Detailed stochastic scheduling studies for a period of 30 days in the summer and the 
winter are presented in the next section. Price forecast is therefore performed for these 
two periods. The data used for forecasting are the historical hourly prices. Historical 
data of the previous five weeks are utilized to forecast the price of a particular day. 
Figure 6.22 shows the forecast prices for a typical day in winter (February 5, 2000) and a 
typical day in summer (August 30, 1999). The actual historical prices and the high and 
low prices computed as yi + 1.1616σi and yi − 1.1616σi, respectively, are also shown in the 
figure. When the prices yi ± 1.1616σi do not exceed the price limits ymax,i and ymin,i 
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FIGURE	6.22	 Price scenario tree.

TABLE	6.4	 Discrete Price Values with Probabilities at an Hour i

Node No. 1 (High Price) 2 (Normal Price) 3 (Low Price)

Discrete price yi + 1.1616σi yi yi − 1.1616σi

Probability 0.3 0.4 0.3
Price range  >yi + 0.52σi yi ± 0.52σi  <yi − 0.52
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 (maximum and minimum price values observed in historical data), the three values are 
distinct. When the discretized low or high prices exceed the maximum or minimum 
observed value, the price is capped at this value.

It may be noted from Figure 6.23 that the forecast expected prices are quite close to 
the real prices in the winter. But the forecast expected prices at hours 13–17 in the sum-
mer are significantly lower than the real prices. The implication of these forecast accura-
cies will be discussed in the next section. The price scenario tree shown in Figure 6.22 is 
formed with these three price scenarios at each stage, except at hour 1 where the price is 
considered to be known.

The probabilities of the three price scenarios shown in Figure 6.22 are for whl = 0.3 for 
the first period. However, the probabilities of reaching a scenario at the successive hour 
(i + 1) from a scenario at the previous hour (i) for any whl can be easily calculated and are 
shown in Table 6.5 for whl = 0.3.

TABLE	6.5	 Arc Probabilities
Arc no. 1 2 3 4 5 6 7 8 9
Probability 0.09 0.12 0.09 0.12 0.16 0.12 0.09 0.12 0.09
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FIGURE	6.23	 Forecast price for forming price scenarios. (a) Forecasted price for a winter day: 
Feb. 5, 2000. (b) Forecasted price for a summer day: Aug. 30, 1999.
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6.5.1.2  Solution Procedure

Two approaches to the solution of the problem have been attempted to represent differ-
ent levels of flexibility in the scheduling.

6.5.1.2.1  Two-stage Stochastic Procedure

The spot market is usually a day-ahead market. The supplier submits bids 24 h ahead, 
and then they have limited adjustments in their operation in different price scenarios in 
the same time period, allowing only the outputs of the units to change. A two-stage 
stochastic procedure is appropriate to represent this feature of bidding by power produc-
ers. In the first stage, only the UC schedule is determined, which is kept unchanged for 
all the scenarios at that period. The unit outputs are specified only 1 h ahead on the basis 
of a more accurate estimate of the price for the next hour.

6.5.1.2.2  Multistage Stochastic Procedure

As the bids are committed only 1 h ahead it may be desirable to adjust generation 
 significantly, beyond the capacity of a fixed UC for all scenarios adopted in the above 
approach if and when there is sudden or fast change in the price. Multistage stochastic 
procedure accommodates this feature as both UC and unit outputs can be adjusted in 
this procedure for different scenarios at the same time interval. As different UC deci-
sions can be made for different scenarios for any one time interval, this approach can 
respond to the change in power price more effectively than the two-stage approach. 
In the two-stage procedure, only the output levels of the units can be adjusted, whereas 
in the multistage procedure, the outputs as well as the UC decisions of all the units can 
be adjusted while subject to the “on”/“off” time-delay constraints. Therefore, the multi-
stage procedure is expected to produce more expected benefits.

6.5.1.3  Illustrative Case Studies

The stochastic self-scheduling technique is applied to the operation of a power producer 
with 11 generating units to optimize the generation schedule (bids) in day-ahead and 
hour-ahead power markets. The generator data used in these studies are listed in 
Table A6.1.1 in Appendix A6.1. Historical power prices were obtained from the website of 
a real power market for the periods July 1–September 30, 1999 and January 1–March 31, 
2000 to represent two different seasons, summer and winter, respectively. A bilateral con-
tact of db = 1750 MW at a fixed price pd has been incorporated in the studies. The issues of 
how to determine pd and db are not explored in this study. The average price of the known 
historical data is taken as the contract price pd. The benefits are calculated for a relatively 
long time period of 30 days for comparison because the techniques are stochastic in nature. 
The benefits derived by the power producer using the following four methods were 
computed.

 i. First, the benefits were calculated by applying deterministic optimal generation 
scheduling methods using the actual market prices and are denoted as R. 
Obviously, the unit schedule and the power dispatch so determined yield the max-
imum possible benefit. It should be noted, however, that the real prices can only be 
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known after the actual event and cannot be used in practice. The benefits com-
puted here are purely for comparison.

 ii. A convenient way of generation scheduling is to use the expected values of the 
market prices. It will not be computationally demanding as it requires only the 
expected values of prices for the next 24 h at the beginning of the day and then 
schedules its generating units deterministically on the basis of the forecast prices 
to maximize its benefits. The unit outputs are adjusted in response to the real 
market prices hour by hour while the UC is unchanged. The benefits obtained by 
this method are denoted as D.

 iii. The benefits enjoyed by the power producer using the two-stage stochastic sched-
uling described earlier are denoted as T.

 iv. The benefits obtained by applying the multistage stochastic scheduling described 
earlier are denoted as M.

The benefits calculated using these four methods for a period of 30 days in summer 
and winter are listed in Table 6.6. The high/low price probability whl is taken as 0.3, 
which means that the probability of high, normal, and low price scenarios are 0.3, 0.4, 
and 0.3, respectively.

As expected, the benefits using the actual price, R, are largest in all cases. This is 
because the values of R are the maximum possible benefits as described above. It should 
also be noted that the benefits obtained using the multistage stochastic scheduling (M) 
are always larger than the benefits obtained using the two-stage stochastic scheduling 
(T). The benefits derived by the power producer in an hour-ahead market are $51,712 
and $1932 more in the summer and in the winter, respectively, compared to the benefits 
derived in a day-ahead market.

The benefits achieved using the proposed stochastic methods M and T exceed the 
benefit achieved applying the deterministic method using the expected values of prices 
D in the summer by $80,350 and $28,603, respectively. However, despite the additional 
complexities involved in the stochastic methods, the benefits obtained using these meth-
ods are found to be less than those obtained by the deterministic method in winter by 
$7317 and $9250. Thus, it appears that specific consideration of the variability of the 
power prices in the optimization process may not necessarily enhance the total expected 
benefits.

A careful look at the forecast price in Figure 6.23a reveals that the expected value of 
the forecast values is very close to the actual prices in the summer and the fluctuation in 
price is very little. Therefore, ad	hoc assignment of high probabilities to the high or low 
prices (whl) may not be quite appropriate. The forecast price in summer shown in Figure 
6.23b exhibits a much larger variation from the actual prices. The proposed stochastic 

TABLE	6.6	 Benefits Obtained Using Different Optimization Procedures for whl = 0.3

Total Benefit ($) Benefit Difference ($)

Time Period R T M D T − D M − D M − T

Summer 28,156,205.33 27,942,355.85 27,994,068.2 27,913,752.53 28,603.31 80,315.65 51,712.34
Winter 24,112,467.90 23,964,416.56 23,966,349.08 23,973,666.66  −9250.09  −7317.58 1932.51
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 techniques seem to enhance the benefits under these conditions. Thus, it appears that it 
is important to assign proper values to whl, which reflects the variability of the market 
prices.

This hypothesis was tested by computing the benefits using the stochastic methods by 
varying the high/low price probability whl from 0.02 to 0.46 in steps of 0.04. The varia-
tion of the difference between the benefits obtained using the two-stage stochastic 
method (T) and the deterministic method (D) with different values of whl is shown in 
Figure 6.24.

The benefit difference declines with higher values of whl in the winter when the varia-
tion of the forecast price is very small. The benefit difference becomes negative for 
whl ≥ 0.14. On the other hand, the benefit difference increases with whl in the summer 
when the price variation is high.

The variation of the difference between the benefits obtained using the multistage 
stochastic method (M) and the deterministic method (D) with different values of whl is 
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shown in Figure 6.25. These curves also exhibit the same pattern as those of Figure 6.24. 
The benefit difference decreases with an increase in whl in winter when the variation in 
actual price is low and increases with an increase in whl in summer when the variation 
of the actual price is high.

Thus, it is evident that the proposed stochastic methods can enhance the benefits of a 
power producer if the high/low price probability whl is properly assigned.

The benefit of using the multistage over the two-stage stochastic procedure is high-
lighted in Figure 6.26, which shows the variation of the benefit difference (M − T) for 
different values of whl. It is clearly seen that the multistage method consistently gives 
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more benefit in summer when the price variation is high. However, there is hardly any 
difference between the benefits produced by the two stochastic methods in winter when 
the price variation is very small. This is explained by the fact that the ability to adjust the 
UC and unit outputs in a spot market will not produce additional benefits when the 
market prices do not vary significantly.

6.5.2   Scheduling Based on Generator Cost Characteristics 
and Market Price Dynamics

In this section, a new generation scheduling approach is presented that takes into account 
both price uncertainty and cost characteristics of the generating units in an effort to 
make a reasonable profit from the operation [20,21].

6.5.2.1  Bidding Strategy

The nature of the generator cost may affect the viability of a price-taker Genco in the 
market. In the traditional power system, the scheduling of generators considers only the 
marginal cost as the fixed costs are taken care of in the process of energy rate-making. 
Following the same logic, the fixed cost may not seem relevant in the daily bidding pro-
cess in the competitive market, because for an existing Genco the fixed cost is sunk cost 
and it should not influence operation of the unit in any period. However, consideration 
of the average costs becomes necessary to ensure the viability of a generating unit. 
A reasonable equilibrium is such that total costs of efficient units are just covered, yield-
ing zero profit for all units in the mix.

The proposed strategy is meant for a price-taker Genco that owns different types of 
generating units, which are economically competitive in the market. As these Gencos 
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have no influence on the market price, their best strategy might be to operate their 
 generators in the most economical way for the expected market price behavior. However, 
the economical operation proposed in this approach does not focus on individual bid-
ding period but on the entire year of operation. Therefore, the bidding strategy does not 
attempt to follow the marginal cost or the average cost of the generating units. Rather, it 
tries to adopt a bidding procedure that allows the generating units to operate economi-
cally on an annual basis. The screening curves described in Section 6.3.1.3 can be uti-
lized to this effect. In this context, the most economical operation is such that the 
generating units will run with capacity factors in the range where they are the most 
efficient units. Thus, the bid for a generator should be developed such that the probabil-
ity of it being successful should be in the range of the capacity factor where the generator 
is the most economical unit.

As this approach emphasizes the bid success over a year rather than any individual bid-
ding period, the detailed and precise models of the market or the Genco are not very cru-
cial. Rather, the following broad assumptions suffice for the development of this strategy:

 i. The market is a spot price market, and the Genco is a price-taker to the extent that 
its bids do not affect the behavior of the spot market price. Effects of contracts 
have not been considered in this formulation.

 ii. The generating units of the Genco are competitive in the market such that, if the 
generating units are operated by devising suitable bid curves to make them suc-
cessful in bidding to run them economically, they can remain profitable.

6.5.2.2  Formation of Bids

Following the bidding strategy presented in Section 6.5.2.1, a three-step bid for a Genco 
with three generators can be developed in the following manner. For this preliminary 
study, the three bid quantities are taken to be the generator capacities of the coal, oil, and 
gas units, respectively. Thus, for the three-step bid:

 QB QB and QB1 1 2 2 1 3 3 2 1= = + = + +P P P P P PG G G G G G, , .

In case the screening curves do not yield such distinct bidding steps or if it is desired 
to further divide the generator capacities into more than one bid level, multilevel bid-
ding for a generator capacity can be pursued by preparing screening curves correspond-
ing to different marginal costs at various output levels of the generators. These 
implementations may be considered in more detailed studies.

These price levels can be obtained from the distribution functions of the market price 
for the purchasing period of time. In this study, the bid curve is set as follows:
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(6.34)

This procedure allows a range of bid prices for the three-bid steps as indicated by the 
range of α1, α2, and α3. The initial study is carried out with α1 = C2, α2 = C1, and α3 = 0.05, 
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which are randomly chosen from the most economical capacity region. Further studies 
are also conducted to investigate whether the choice of different values of α1, α2, and α3 
in the above ranges affect the outcome significantly. The optimal setting of these bid 
prices within the optimal range needs further investigation.

6.5.2.3  Implementation of the Bidding Strategy

The profit for the Gencos with three generators by adopting the proposed bidding strat-
egy can be expressed as
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The bid quantities (QBs) are set as discussed above. The bid status (UBs) depend on the 
actual MCP PRs at each operating period. Actual historical price data from the Singapore 
electricity market is used as the MCP in this study. It is worth noting that Equation 6.35 
is not optimized any further. Rather, the specifying QBs and the corresponding PBs as 
formulated earlier are expected to produce appropriate levels of bidding success and 
reasonable amount of profit, considering both the behavior of the market price and the 
generator cost characteristics.

6.5.2.4  Illustrative Case Study

6.5.2.4.1  Generating Unit Characteristics

This study will consider a Genco having three generating units that are competitive in 
the market having the following characteristics:

 i. A base unit (e.g., a coal unit) whose cost will be less than the weekly mean price 
99.9% of the time.

 ii. An intermediate unit (e.g., an oil unit) whose cost will be less than the weekly 
mean price 50% of the time.

 iii. A peaking unit (e.g., a gas unit) whose cost will be less than the weekly mean price 
15% of the time.

The basic data of the generators in Table A6.1.2 are used to compute the cost compo-
nents of the generators that are shown in Table A6.1.3 in Appendix A6.1. The screening 
curves derived from these data are shown in Figure 6.27, which determines the most 
economical capacity factor of the generators shown in Table 6.7.

6.5.2.4.2  Bid Formulation

According to the strategy explained earlier, the three bid quantities and the correspond-
ing bid prices for the bid curve of each period will be determined in the following way:
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The values of PSs will depend on the parameters of the statistical distribution of the 
forecast market price for the respective time period. The parameters of the statistical 
distribution for different periods of the day are listed in Table A6.1.3 in Appendix A6.1. 
The bid prices are computed from the price distribution curve with probabilities of 70%, 
15%, and 5% corresponding to bid quantities of 300, 500, and 650 MW, respectively. The 
determination of bid prices at each period from the cumulative density function is illus-
trated in Figure 6.28. These bid prices derived for different periods of the day are listed 
in Table A6.1.4 in Appendix A6.1.

The operation of the Genco is simulated using the following algorithm according to 
the proposed bidding strategy outlined earlier.

 1. Set k = 1 (for day 1).
 2. Set j = 1 (for period 1).
 3. Determine the bid prices (PB1,j, PB2,j, and PB3,j) from Equation 6.9.
 4. Get the MCP from USEP 2006.
 5. Determine the bid status by comparing the bid prices and the MCP.
 6. Calculate the operating cost and the revenue for G1, G2, and G3 on the basis of the 

bid status.

TABLE	6.7	 Screening Curve Analysis Results for Genco Units

Unit Type Size (MW) Most Economical Capacity Factor (%)

G1: Base unit (coal) 300 70–100
G2: Intermediate unit (oil) 200 15–70
G3: Peaking unit (gas) 150 0–15
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FIGURE	6.27	 Screening curves of Genco generator units.
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 7. If j < 48, set j = j + 1 and go back to step 3.
 8. If k < 365, set k = k + 1 and go back to step 2.
 9. Summarize the operating cost and the revenue for G1, G2, and G3.
 10. Calculate the fixed cost for G1, G2, and G3.
 11. Calculate the profit by using revenue minus the fixed cost and the operating cost.

This operation is simulated for a full year, and the three generator units are commit-
ted to run according to the bid strategy developed above.

It should be noted that many details of UC constraints such as minimum up/down 
time have been ignored in this preliminary study to keep the analysis simple and to keep 
the focus on the bidding strategy.

The investment and operation and maintenance cost components contribute to a 
 significant portion of average generation cost and therefore become important in the 
calculation of profits. These cost components are computed and shown in Table A6.1.3. 
MCP, which is in Singapore dollar, has been converted to U.S. dollar using an exchange 
rate of S$1. 4/US$.
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Profits generated by the three generating units by adopting the proposed bidding 
strategy are listed in Table 6.8. All three units make profits and the total profit for the 
year is found to be 187 million dollars.

6.5.2.4.3  Important Extensions

In the study concluded above, the bid prices for the three blocks were fixed at arbitrary 
values within the feasible range by selecting arbitrary values of αis. It would be worth-
while to check whether the performance can be improved by varying the values of αi 
within the acceptable range. Also, the statistical distribution of the market price was 
taken as lognormal ad hoc, because this distribution fitted the historical data. It would 
be desirable to investigate the impact on the performance of the bidding strategy if the 
distribution function did not fit the data so well.

Impact	of	αis—The	Desired	Bid	Success	Rate	Settings: The effect of setting the bid suc-
cess rates at different values within the acceptable range was investigated by repeating 
the above simulation with different values of αis. In order to keep the number of combi-
nations at a reasonable value, six different values of αis within their respective ranges 
were adopted by varying the probability in Equation 6.36 as follows:

 i. α1 varied between C2 and 1.00 in six equal steps, that is, between 0.70 and 1.00 
with a step size of 0.06.

 ii. α2 varied between C1 and C2 in six equal steps, that is, between 0.15 and 0.70 with 
a step size of 0.11.

 iii. α3 varied between 0 and C1 in six equal steps, that is, between 0 and 0.15 with a 
step size of 0.03.

The simulation results where the maximum profit was achieved are shown in Table 6.9. 
The values of the αi settings and the actual bid success rates are also shown in the table. 

TABLE	6.8	 Results of Genco Operation with the Proposed Bidding Strategy

Unit Type Revenue ($ × 106) Cost ($ × 106) Profit ($ × 106)

G1: Coal 417.76 243.73 174.04
G2: Oil 44.83 37.99 6.84
G3: Gas 24.27 18.15 6.12
Total 486.86 299.87 187.00

TABLE	6.9	 Results of Genco Operation Using the Lognormal Distribution Model

Using Lognormal Distribution for Market Price Using Actual Price

Unit Type αi (%)

Bid 
Success 

Rate (%)
Cost 

($ × 106)
Revenue 
($ × 106)

Profit 
($ × 106)

Profit 
($ × 106)

Bid 
Success 

Rate (%)

G1: Coal 100 99.1 287.263 494.205 206.942 208.036 100
G2: Oil 59 66.9 214.461 244.651 30.190 31.609 66
G3: Gas 9 3.5 21.477 28.136 6.659 10.835 3.23
Total — — 243.792 250.480 —
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It is seen that the maximum profit achieved in this case is considerably higher and it 
occurs when the bid success rate αi settings are set at the higher end of the respective 
ranges. The table also lists the maximum profit achieved when the actual MCP was 
assumed to be known rather than estimated from the forecast distribution. This is the 
absolute maximum profit achievable. The comparison of the two profits shows that the 
performance of the bidding strategy has been quite good.

Impact	of	Market	Price	Model	Accuracy: To investigate the possible effect of accuracy 
of the adopted statistical distribution of the market price, the simulation was repeated by 
adopting two more distribution models, namely, Weibull and normal distributions. The 
results are tabulated in Tables 6.10 and 6.11, respectively. The observations made regard-
ing the results using the lognormal distribution are also valid for these two distribu-
tions, except that the maximum profit has decreased to some extent. This is rather 
expected as these two distributions are not as good a fit for the MCP as the lognormal 
distribution. This clearly indicates that an accurate model of the market price behavior 
is important for the strategy to work well.

Comparison	with	Marginal	Cost	Bidding: For comparison, the bidding exercise has 
been conducted for the Genco with the comparable marginal cost bidding. Although 
accurate replication of the bidding exercise is difficult, the three-step bids and the cor-
responding marginal costs have been specified as follows:

 i. The bid price for the coal unit (a base unit) capacity is kept at a marginal cost at 
full load output power.

 ii. The bid price for the oil unit (an intermediate unit) capacity is kept at a marginal 
cost at a medium output power of 60%.

 iii. The bid price for the gas unit (peaking unit) capacity is kept at a marginal cost at 
a low output power of 25%.

The marginal costs are computed using the generator cost data tabulated in Appendix 
A6.1 and are found to be
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for the coal, oil, and gas unit capacities, respectively.

TABLE	6.10	 Results of Genco Operation Using the Weibull Distribution Model

Using Weibull Distribution for Market Price Using Actual Price

Unit Type αi (%)

Bid 
Success 

Rate (%)
Cost 

($ × 106)
Revenue 
($ × 106)

Profit 
($ × 106)

Profit 
($ × 106)

Bid 
Success 

Rate (%)

G1: Coal 100 98.3 285.351 490.571 205.220 208.036 100
G2: Oil 59 64.3 207.019 237.474 30.455 31.609 66
G3: Gas 3 3.09 19.871 25.746 5.876 10.835 3.23
Total — — 241.550 250.480 —
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The total profit obtained from the simulation of the Genco operation using these mar-
ginal cost biddings is found to be 235.069M$, the profits obtained from the individual 
units being 208.036M$, 20.658M$, and 6.375M$ for the coal, oil, and gas units, respec-
tively. This is slightly lower than the total profit of 243.792M$ achieved by the method 
proposed in this chapter using lognormal distribution of electricity price. This further 
indicates the ability of the proposed method to yield reasonable profits.

6.5.3   Management of Price Uncertainty in Short-Term 
Generation Scheduling

The way to deal with the uncertainty can be extended by taking into account the risk 
preference of the Genco. Two important means to manage the price uncertainty are 
(i)  suitable flexible bids and (ii) the use of hedging tools such as forward contracts. 
The  influence of these factors in the Genco’s short-term generation planning and the 
corresponding profit performances is studied in this section.

6.5.3.1  Price Uncertainty

The random variable PSt
rand corresponding to the next-day price is represented by the 

lognormal distribution [22]:

 PS PS SDevt t t
rand Lognormal= ( , )  (6.37)

As price forecasting is not the main emphasis of this work, random price behavior con-
forming to this distribution is generated using the Monte Carlo technique for the given 
values of mean and variance.

6.5.3.2  Risk Behavior

To include risk behavior, each scenario in Equation 6.29 is first segregated as
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TABLE	6.11	 Results of Genco Operation using the Normal Distribution Model

Using Normal Distribution for Market Price Using Actual Price

Unit Type αi (%)

Bid 
Success 

Rate (%)
Cost 

($ × 106)
Revenue 
($ × 106)

Profit 
($ × 106)

Profit 
($ × 106)

Bid 
Success 

Rate (%)

G1: Coal 100 100 289.137 497.136 207.999 208.036 100
G2: Oil 59 61.6 199.365 229.291 29.926 31.609 66
G3: Gas 9 4.27 24.467 28.234 3.767 10.835 3.23
Total — — 241.692 250.480 —
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To account for risk behavior at different generation levels, the objective is written as 
maximization of the expected utility for each scenario as follows:
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(6.39)

The determination of the utility function is subjective as it depends on the attitude of 
an individual toward accepting risk. The von Neumann–Morgenstern concept based on 
identifying the most favorable and least favorable outcome can be applied to find the 
individual utility function. These limiting outcomes are taken as the reference for iden-
tifying other possible outcomes. In this study, the exponential expected utility function 
is adopted as follows:

For	risk-averse	Gencos:

 U i s
i( ), ,

( ),Π Π
spot e spot= −( )− −λ α1 β

 (6.40)

For	risk-seeking	Gencos:
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where, α, β, and λ are constants that define the risk behavior of the decision-maker, that 
is, the Genco.

6.5.3.3  Incorporation of Contracts in the Objective Function

Gencos may further utilize forward contracts to manage risk. The hedging method used 
in this study is based on Daniel Bernoulli’s (1738) expected utility hypothesis on risk 
behavior, which was axiomized in 1944 by John von Neumann and Oskar Morgenstern 
[23]. Hedging with contract changes the profit in each price scenario s by ΔΠi,s.
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where

 QF h Gi t i t i, ,
max=  (6.43)

and ht is the hedging ratio in period t such that 0 ≤ ht ≤ 1.
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Figure 6.29 shows a possible way in which the contracts may be available in blocks of 
hours. Block 1, for instance, represents a 24-h (day) contract block with forward price 
PFt,B(24),1. To represent these blocks, Equation 6.42 is modified to

 
ΔΠi s i t B HL BI t B HL BI s t
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= all1  

(6.44)

Explaining further, QFt,B(8),3 in Figure 6.29 represents quantity forward in time t for 
8-h block contracts (HL = 8) between time period 17–24 (BI = 3). It should be noted that 
the time span of the blocks are market-specific and Figure 6.29 is given just for illustra-
tive purposes.

A set of constraints is imposed to limit the volume of contract. Firstly, the volume of 
contract with same block hour length, HL, and the same block index, BI, must be equal 
in the time frame represented by the block index.

Hence,

 QF QFt B HL BI t B HL BI, ( ), , ( ),= +1  (6.45)

In terms of the hedging ratio,

 h ht B HL BI t B HL BI, ( ), , ( ),= +1  (6.46)

Secondly, the sum of all block contracts in each time period should be less than the 
maximum capacity of the unit.

Hence,
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1–8

Block 1

Block 2

Block 3

QFt,B(24),1, PFt,B(24),1

QFt,B(12),1, PFt,B(12),1 QFt,B(12),2, PFt,B(12),2

QFt,B(8),1, PFt,B(8),1 QFt,B(8),3, PFt,B(8),3

Time periods 9–16 17–24

FIGURE	6.29	 Blocks of contracts.
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In terms of the hedging ratio,
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(6.48)

The attitude toward risk under price uncertainty can be expressed in terms of the 
expected utility function as
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6.5.3.4  Bidding Methodology

Simple two-step bids, though shown to give good results for price-takers [24,25], may 
never be optimal as those bids cannot capture price volatility. Even price-takers cannot 
neglect the impact of fluctuating prices, although their individual decisions may not 
have any impact on the market price. To realize the benefits beyond two-step bids, we 
have adopted a generation schedule where:

 i. Gencos’ decisions to turn “on” or “off” a unit (UC) are still determined by the two-
step bid function considered as in the study by Conejo et al. [25].

 ii. Gencos can vary output between Gi
min and Gi

max  at any price level.

These characteristics of bids would be similar to those where the UC is decided on the 
basis of day-ahead bidding using a two-step bid function and the actual generator out-
put is decided on the basis of hour-ahead market, when the price forecast would be much 
more accurate. The hour-ahead price forecasting is assumed to be accurate enough to 
predict the MCP and the scheduling is based on this price. (In other words, it is equiva-
lent to saying that the distribution of hour-ahead price has a standard deviation of zero.) 
It is further assumed that through a proper multistep bidding, it would be possible to 
attain a scheduling where the MCP will match the marginal cost of the generation units. 
The difference in the profit obtained using these hour-ahead schedules over that obtained 
using only the day-ahead two-step bids would indicate the additional profits possible 
from an ideal multistep bidding in the hour-ahead market.

It should be noted that the hour-ahead scheduling would be particularly useful for 
smaller and lighter generating units used by Gencos to manage the power output in 
short-term scheduling. The ramp rates of these units are high enough to enable them to 
achieve the necessary output excursions. However, many slower and larger generating 
units are limited by their ramping rates [26,27]. It has been shown, however, that a sim-
ple ramp rate representation is not adequate to evaluate the short-term scheduling abili-
ties of these units [28]. Such elaborate treatment of the ramping process is not in the 
scope of this study. Therefore, ramp rate constraints have not been included in the model 
so that possible distortions from inadequate representation of ramping constraints do 
not affect the evaluation of possible benefits from the scheduling introduced in the 
 hour-ahead market.
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A method based on GAs, as mentioned in Section 6.4.2.3, has been developed to 
obtain UC decisions according to the above assumptions and the objective function can 
be solved using the following procedure, written in pseudo-code [29]:

BEGIN
For all population

For all scenarios
Calculate profit for each scenario
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where p is the chromosome index
End
Calculate fitness function
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(6.51a)

or
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End
Store fitness for the population size
END

The maximum profit for risk-neutral Gencos represented by Equation 6.29 is obtained 
for all the chromosomes in the population using the fitness function in Equation 6.51a. 
Equation 6.50 is first solved using quadratic programming (MATLAB [30]) for all sce-
narios and fitness is calculated through Equation 6.51a. This is not similar to the solu-
tion obtained using expected mean price in the study by Conejo et  al. [25] because 
multistep bids provide the opportunity to vary dispatch quantity depending on the real-
ized prices in the spot market. In case of risk-averse and risk-seeking Gencos, the maxi-
mum utility in Equation 6.49 is derived through the fitness function in Equation 6.51b. 
The ‘Fmincon’ function in MATLAB is used to solve Equation 6.51b to obtain optimum 
fitness.

6.5.3.5  Numerical Example

The following examples are based on generator units provided in the study by Orero and 
Irving [12]. The characteristics are given in Table A6.1.4 in Appendix A6.1. The forecast 
price [31] and standard deviation considered for analysis are given in Table A6.1.5 in 
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Appendix A6.1. To consider the effect of an increase in the uncertainty of price on the 
profit objective, two sets of standard deviations in price are taken for the same expected 
mean price. On the basis of the lognormal price distribution, Monte Carlo simulation is 
performed and 10,000 sets of MCPs are randomly generated to investigate the effects of 
price uncertainty on the expected profit.

Table 6.12 shows the best three UC status obtained from GA that gives the highest 
fitness values (not in order of fitness) for unit 2 in Table A6.1.4. Each of the UC status is 
referred to as UC1, UC2, and UC3 hereafter. The mean value in Table 6.12 is the expected 
profit obtained for the unit status considering the price forecast and two-step bid func-
tion in a similar way as in the study by Conejo et al. [25]. UC1 is the optimal solution 
obtained from PBUC whose target generation level is given in Table A6.1.6 (see Appendix 
A6.1) for risk-neutral Gencos.

The fitness values obtained from GA for the unit status in Table 6.12 for high and low 
levels of uncertainty in next-day price are shown in Table 6.13. From Table 6.13, it can be 
said that:

• The flexibility in scheduling provided by assumptions described in Section 6.5 
shows quite an improvement in the expected profits (i.e., $4054.3 as compared to 
$3650.6 for UC1). This indicates that multiple bid curves should be able to repre-
sent price uncertainty better and hence can be expected to improve the expected 
profits.

• Considering that higher prices would make higher profits if more generation is 
scheduled, it is seen that UC2 gives higher expected profits than UC1 as the unit 
is turned on for period 7.

• Higher uncertainty in price means even higher profits if prices reach higher levels. 
Hence, for a higher price variance, both UC2 and UC3 give higher expected prof-
its than UC1.

TABLE	6.12	 Best Three Unit Commitment (UC) Status for the 
Highest Fitness Values for Unit 2

S. No. Unit Status (1–24 h) Mean ($) [24]

UC1 111000011111111111111111 3650.6
UC2 111000111111111111111111 3650.1
UC3 111111111111111111111111 3577.7

TABLE	6.13	 Fitness Values for Low and High Levels of Price Uncertainty

Price Variance UC Cases Mean ($) Maximum ($) Minimum ($) Standard Deviation

Low UC1 4054 6264 2195 625
UC2 4081 6425 2155 632
UC3 4033 6583 2124 638

High UC1 4272 7316 1486 806
UC2 4317 7422 1501 814
UC3 4301 7612 1512 828
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This shows that a simple two-step bid function limits the possibility of higher profits 
as it fixes the quantity produced at either zero or a fixed value in each time period. 
Hence, even for price-takers, a multiple bid function should be considered that could 
take advantage of the possibility of higher prices by bidding at multiple quantity levels 
for different prices. It can be said that proper representation of uncertainty can be the 
key to improving profits. However, the method of obtaining proper bid curves under 
price uncertainty is not the main focus of this study. Hence, for analysis and compari-
sons, the bid function is still considered a two-step function as has been described in 
Section 6.4.2.3. It should be noted that for a two-step bid function, a solution using mul-
tiple price scenarios or an expected mean price will result in the same solution as in the 
study by Conejo et al. [25]. Hence, for risk-neutral Gencos, Equation 6.51a is directly 
solved using quadratic programming [30].

The risk behavior is expressed by utility functions 6 and 7, with the constants:
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For contract decisions, four cases are considered with two types of block contracts 
available for hedging, as shown in Table 6.14. Forward price for each block is considered 
to be the mean of the expected prices in the time periods that represent the blocks. For 
instance, the forward price of the 24-h contract is taken as the average of the expected 
prices of the 24-h time periods the contract covers.

Table A6.1.6 in Appendix A6.1 shows the effect of hedging by controlling the genera-
tion level for Gencos differing in their willingness to take risk. In addition to the genera-
tion level, Table A6.1.7 shows the effect of using contracts for the four cases of Table 6.14 
considering risk attitudes of Gencos.

Changes in the generation level in Table A6.1.6 in Appendix A6.1 are shown in 
Figure 6.30. It can be seen that risk-averse Gencos opt for lower generations to maximize 
their utility values whereas risk-seeking Gencos decide on producing more to maximize 
their utility. Considering that Gencos use two-step bids, it can be seen from Table A6.1.7 
that risk-neutral Gencos looking for maximum expected profit select a UC1 schedule 
status, which gives an expected profit of $3660. Similarly, risk-averse Gencos choose a UC1 
schedule as it gives the highest utility of 0.6556 (i.e., case 4 in Table A6.1.7). However, 
risk-seeking Gencos bid as per a UC2 schedule status that gives the maximum utility of 
0.248. Hence, the large shift in generation from 0 to 83 MWh is observed in Figure 6.30 
in period 7 for risk-seeking Gencos.

TABLE	6.14	 Four Cases under Study

Period Length (h) 24-Hour Block Contract (Nos) 12-Hour Block Contract (Nos)

Case 1 24 1 0
Case 2 24 0 2
Case 3 24 1 2
Case 4 24 0 0
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The effect of hedging considering contract decisions, given in Table A6.1.7, is com-
pared in Figures 6.31 and 6.32 for risk-averse and risk-seeking Gencos, respectively. It 
was found that there is hardly any noticeable difference in the expected mean of differ-
ent Gencos. The amount of utility that the risk-averse Genco receives from the decisions 
is slightly higher than that received by the risk-neutral Genco despite having a slightly 
lower expected profit, as can be seen from certainty equivalent (CE) plots in Figure 6.31 
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and Table A6.1.7 in Appendix A6.1. This CE indicates that a risk-averse Genco will 
choose a decision with more certain income (higher utility) despite the lesser expected 
mean value. CE and hence risk premium (RP) for risk-averse producers with and with-
out contracts indicate the effect of contracts in reducing risk. Higher values of CE (and 
hence lower RP) indicate that risk is considerably decreased when contracts are used. 
This effect can be seen from the reduction in the gap between maximum and minimum 
income and the reduced standard deviation leading to a more stable income. In this way, 
it is seen that decisions on generation as well as contracts help in hedging price uncer-
tainty for risk-averse Gencos. It should be noted that the minimum profit of a risk-averse 
Genco has significantly increased due to the contracts, which comes in exchange for the 
reduced maximum profit.

In the case of risk-seeking producers, higher (negative) RP is indicative of increased 
risks and less stable income as indicated by higher standard deviation. It is observed that 
the performances of risk-seeking and risk-neutral Gencos are very comparable in this 
respect. This is because the contract price based on the expected mean is not attractive 
for both risk-neutral and risk-seeking Gencos and hence the only way for the Gencos to 
optimize their revenue is by changing the level of generation. In particular, for risk-
seeking Gencos, the forward contract considered in this study plays no role in improv-
ing their objective because contracts will prevent them from reaping the benefits if the 
price is high.

Table 6.15 shows the comparison of optimal contract size for a risk-averse Genco in 
view of the level of uncertainty. The results provide an insight into the need for a proper 
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representation of price uncertainty while making strategies to manage it. In general, it is 
expected that a risk-averse Genco would hedge more in the market for higher uncer-
tainty in price. However, cases 1 and 2 indicate that the optimal hedging ratio is higher 
for less uncertainty than for high uncertainty. This may be attributed to the lognormal 
price distribution where the probability of price reaching very high is progressively low. 
Hence, the utility derived by reducing the hedging ratio gives slightly better output 
when price uncertainty is high.

With regard to the choice of contract blocks, comparison of cases 1 and 2 in 
Table A6.1.7 shows that both utility and expected mean is higher for case 2. Hence, it can 
be said that for the hedging objective, 12-h blocks are a better choice than 24-h blocks 
for the forward price considered. Also, case 3, comprising both 12- and 24-h blocks, 
provides the same utility as case 2. This means that the choice in contract block selection 
does not have an added advantage with respect to utility derived in the example under 
consideration. However, as can be seen from Figure 6.33, the availability of multiple 
contract combinations resulting in the same optimal utility provides flexibility in the 
selection of the types of contracts.

The solution time for GAs was approximately 45 min in an Intel PIV, 2.4 GHz, and 
256 MB of RAM platform. When more realistic studies are made with multiple genera-
tors with a single Genco, or multistep bid functions, the computation time is expected 
to increase. However, it should be possible to limit such an increase by adopting 
approaches suitable for these elaborate representations to achieve reasonable computa-
tion times.

TABLE	6.15	 Contract Size and Uncertainty

Hedging Ratio

Uncertainty Contract Blocks UC1 UC2 UC3

Case 1 More h t,B(24)1 0.682 0.702 0.725
Less h t,B(24)1 0.739 0.757 0.777

Case 2 More h t,B(12)1 0.437 0.461 0.512
h t,B(12),2 0.878 0.885 0.886

Less h t,B(12)1 0.578 0.616 0.665
h t,B(12),2 0.861 0.863 0.861
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6.6  Conclusions

Two major changes in the recent past, namely (i) the deregulation of power industry, and 
(ii) the emergence of renewable energy sources, have influenced the way power systems 
are operated around the world. Both these changes have introduced additional uncer-
tainties in the system operation in different ways. Market participants now have to man-
age the uncertainties in the electricity price on one hand and the effects of the inherently 
variable nature of two most common renewable sources, wind power and solar PV 
power. These new features have made the task of optimal economic operation of power 
systems more complex where traditional UC and generation scheduling methodologies 
are not sufficient. This chapter presented various studies on PBUC and price-based 
scheduling techniques for optimization of the planning and operation of power systems 
under this new context.

The nature of USEP has been investigated in some detail with the intention of estab-
lishing a suitable statistical distribution to describe the behavior of electricity price in a 
competitive market. On the basis of graphical and statistical analyses of the historical 
data, the lognormal distribution was found to best describe market price behavior, 
though the Weibull and normal distributions also fitted reasonably well. Although price 
behaviors may vary from market to market, such statistical characterization of price has 
been used in the price-based scheduling methods described in this chapter.

General formations of the PBUC problem for competitive markets along with different 
solution techniques and several approaches for price-based scheduling have been pre-
sented in this chapter. Heuristic techniques in coordination with traditional UC solution 
methodologies are developed to obtain optimal schedules for generating units. Numerical 
examples have been presented to illustrate the effectiveness of various techniques.

The stochastic scheduling technique based on two-stage and multistage stochastic 
methods that accommodate the features of day-ahead and hour-ahead power markets, 
respectively, for maximizing a producer’s benefit considering the stochastic nature of 
electricity price, has been presented in detail. Implementation of the technique was 
illustrated by applying the technique to the scheduling problem of a power producer 
with 11 generators in two different seasons. The results indicated that this stochastic 
 self-scheduling technique is particularly effective when the uncertainty in the price is 
high and the price forecast is not very accurate.

Two important ways to manage the price uncertainty, namely, (i) suitable flexible bids 
and (ii) the use of hedging tools such as forward contracts, were also studied. The influence 
of these factors in short-term generation planning and corresponding profit performances 
of Gencos was investigated in the new scheduling scheme. Gencos risk behavior was rep-
resented by exponential utility functions. The bid functions were taken to be flexible and 
the simple contracts for hedging were assumed to be available. The UC task was then com-
bined with the hedging process and the solution method based on GAs was implemented 
to obtain optimal scheduling. Results of numerical examples indicated that the flexible 
outputs and forward contracts can be used to successfully hedge against price risks in 
order to achieve the desired profit performance in accordance with Gencos risk behavior.

Another generation scheduling technique for price-taker Gencos was also presented, 
which takes into account both the market price uncertainty as well as the cost 
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 characteristics of the generating units, while ensuring a reasonable profit from the oper-
ation. The screening curve commonly used in the planning and operation of generators 
in the traditional operation of power systems to characterize the economic merits of the 
generating units were utilized in this technique to account for the costs incurred by the 
Gencos in their operation. This was in turn utilized to establish the desired level of bid-
ding success in the market. The most economical way to operate a generator under this 
formulation is such that the generating units will run with capacity factors in the range 
where they are the most efficient units.

Appendix A6.1:  System Data and Results

TABLE	A6.1.1	 Generator Unit Data

Unit No.

Output (MW)
Cost Function 

Coefficients Startup 
Cost 
($)

Minimum 
Up Time 

(h)

Minimum 
Down 

Time (h)

Minimum 
Cold Time 

(h)

Initial 
State 
(h)aMinimum Maximum a b c

1 150 660 192.00 7.80 0.0026 440 9 9 9 9
2 160 450 264.00 17.40 0.0029 1500 6 5 5 5
3 100 400 253.09 9.00 0.0023 1000 8 5 5 8
4 140 350 212.47 13.03 0.0018 500 8 5 6 8
5 75 250 168.00 16.32 0.0014 70 4 4 5  −1
6 20 200 206.40 32.40 0.0312 250 5 5 6  −3
7 45 120 263.73 23.04 0.0084 160 4 3 3  −3
8 68.9 197 310.96 27.60 0.0031 400 5 4 4  −4
9 10 80 98.40 19.20 0.0276 120 3 1 2  −1
10 12 60 153.33 46.26 0.0384 60 1 1 1  −1
11 12 60 153.73 44.00 0.0391 60 1 1 1  −1

a For the initial state, “ −1” means that the unit has been “off ” for 1 h and “8” means that the unit has 
been “on” for 8 h.

TABLE	A6.1.2	 Generator Unit Characteristics

Unit Type
G1: Base 
(Coal)

G2: Intermediate 
(Oil)

G3: Peaking 
(Gas)

Rated capacity (MW) 300 200 150
Heat rate (Btu/kWh) 9000 10000 12000
Fuel cost ($/MBtu) 5.0 9.0 14.0
Plant cost ($/kW) 1000 500 250
Fixed operation and maintenance cost ($/kW/year) 20 9 1
Variable operation and maintenance cost ($/MWh) 4 6 7
Levelized fixed-charge rate/year (%) 20 20 20
Present-worth rate/year (%) 10
Fuel price escalation/year (%) 6
Capacity factor (%) 100
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TABLE	A6.1.3	 Annual Costs of the Generating Units

Unit Type G1: Base (Coal) G2: Intermediate (Oil) G3: Peaking (Gas)

Operating costs ($ × 106/
year)

Levelized fuel costs 201.04 268.06 357.28

Variable levelized operation and 
maintenance costs

17.87 17.87 15.64

Fixed costs ($ × 106/year) Fixed levelized operation and 
maintenance costs

10.2 3.06 0.255

Levelized investment costs 60 20 7.5
Total costs ($ × 106/year) 289.11 308.99 398.67

TABLE	A6.1.4	 Characteristics of Generator Units

Unit Pmax (MW) Pmin (MW) MDT (h) MUT (h) Initial Condition (h) Initial Power (MW) a ($) b ($/MW) c ($/MW2) σ ($) δ ($) Time Constant (h)

1 185 54.3 4 5 5 185 143.735 11.694 0.0066 160 160 6
2 140 30.0 3 3  −4 0 50.000 13.700 0.0066 60 90 3

Source: Adapted from Shrestha, G. B., Song, K., and Goel, L. Electric	Power	Systems	Research, 71, 91–98, 2004. 
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TABLE	A6.1.5	 Price Forecast and Standard Deviations for 24 h

Hour Forecast Standard Deviation 1 Standard Deviation 2

1 21.831 1.5 2.5

2 16.043 1.5 2.5
3 12.983 1.05 2
4 12.969 1.05 2
5 13.600 1.05 2
6 13.818 1.05 2
7 14.729 1.05 2
8 15.021 1.25 2.5
9 15.073 1.25 2.5
10 15.334 1.25 2.5
11 15.313 1.25 2.5
12 15.091 1.5 2.5
13 14.673 1.5 2.5
14 14.431 1.5 2.5
15 16.107 1.5 2.5
16 16.534 1.5 2.5
17 14.808 1.5 2.5
18 15.491 1.8 3
19 16.101 1.8 3
20 20.215 1.8 3
21 22.949 1.8 3
22 16.055 1.8 3
23 15.857 1.5 2.5
24 15.201 1.5 2.5
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TABLE	A6.1.6	 24-Hour Generation Schedule Considering Utility Functions for Various Risk Attitudes for UC1, UC2, and UC3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

UC1 Risk neutral 140 140 30 0 0 0 0 100 104 124 122 105 74 55 140 140 84 136 140 140 140 140 140 114
Risk averse 140 140 30 0 0 0 0 98 100 120 118 99 71 53 140 140 77 125 140 140 140 140 140 108
Risk seeker 140 140 30 0 0 0 0 107 111 131 127 111 80 60 140 140 88 140 140 140 140 140 140 122

UC2 Risk neutral 140 140 30 0 0 0 78 100 104 124 122 105 74 55 140 140 84 136 140 140 140 140 140 114
Risk averse 140 140 30 0 0 0 76 98 101 120 118 100 71 53 140 140 77 125 140 140 140 140 140 108
Risk seeker 140 140 30 0 0 0 83 107 111 131 127 111 80 60 140 140 88 140 140 140 140 140 140 122

UC3 Risk neutral 140 140 30 30 30 30 78 100 104 124 122 105 74 55 140 140 84 136 140 140 140 140 140 114
Risk averse 140 140 30 30 30 30 76 98 100 120 118 100 71 53 140 140 77 126 140 140 140 140 140 108
Risk seeker 140 140 30 30 30 30 81 104 107 127 125 108 77 57 140 140 86 140 140 140 140 140 140 118
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TABLE	A6.1.7	 Profits and Contract Comparisons for UC1, UC2, and UC3

Contract Blocks

Case Utility CE RP EMV Maximum Minimum SD h t,B(24)1 h t,B(12)1 h t,B(12),2

UC1 Risk averse Case 1 0.6636 3628 22 3650 5005 2227 379 0.682 0.000 0.000
Case 2 0.6645 3637 17 3654 4929 2349 339 0.000 0.437 0.878
Case 3 0.6645 3637 18 3655 4958 2351 342 0.127 0.290 0.756
Case 4 0.6556 3550 108 3658 6550 355 853 0.000 0.000 0.000

Risk seeking All 0.2476 3777  −119 3658 6751 233 885 0.000 0.000 0.000
Risk neutral All 0.6554

(0.2473)
3548

(3774)
112

(−114)
3660 6653 297 868 0.000 0.000 0.000

UC2 Risk averse Case 1 0.6639 3631 19 3650 4926 2197 354 0.702 0.000 0.000
Case 2 0.6647 3639 16 3655 4887 2399 323 0.000 0.461 0.885
Case 3 0.6647 3639 16 3655 4895 2383 325 0.120 0.339 0.768
Case 4 0.6555 3549 110 3659 6625 368 860 0.000 0.000 0.000

Risk seeking All 0.2480 3780  −121 3659 6750 248 893 0.000 0.000 0.000
Risk neutral All 0.6553

(0.2477)
3547

(3777)
114

(−116)
3661 6681 311 875 0.000 0.000 0.000

UC3 Risk averse Case 1 0.6570 3563 14 3577 4663 2385 302 0.725 0.000 0.000
Case 2 0.6576 3569 12 3581 4621 2505 282 0.000 0.512 0.886
Case 3 0.6576 3569 12 3581 4623 2514 280 0.017 0.486 0.868
Case 4 0.6478 3475 111 3586 6614 290 863 0.000 0.000 0.000

Risk seeking All 0.2402 3708  −121 3588 6738 202 888 0.000 0.000 0.000
Risk neutral All 0.6476

(0.2399)
3473

(3706)
115

(−118)
3588 6697 233 878 0.000 0.000 0.000

Note: CE, certainty equivalent; EMV, expected mean value; RP, risk premium; SD, standard deviation.
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7.1  Introduction

7.1.1  The Hydroelectric Unit Commitment Problem

The classic unit commitment problem consists of establishing, for each period of the 
planning horizon, the start-up and shutdown for each power unit of a power system. It is 
very common to find this problem integrated with the economic dispatch, so the 
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 integrated solution also computes, besides the start-up and shutdown for each power 
unit in each time period, the optimal generation program to the committed operating 
units during each period of the scheduling horizon.

Nilsson and Sjelvgren (1997b) study the start-up costs of the hydraulic units answer-
ing three basic questions: What are the causes of the start-up costs? What are the values 
of these costs? How does the start-up affect the short-term scheduling strategies of the 
generators? With regard to the causes of these costs, the authors mention the machinery 
wear and tear due to temperature changes during start-up, so it is necessary to perform 
regular maintenance to prevent life-cycle reduction. In addition to the unavailability of 
the units, there could be malfunctioning of the control equipment during start-up, with 
the corresponding technical personnel costs for reparation. Regarding the costs during 
start-up, the authors divide the costs into three phases depending on the units’ speed: 
from 0% to 90% of the nominal speed, from 90% to the nominal speed, and above this 
speed. The authors argue that there is no common method for estimating the start-up 
cost, but each company uses its own way of determining it. About the third question, the 
start-up cost can be considered when controlling the maximum number of start-ups per 
day for each unit.

Li et al. (1997a) solve the thermal unit commitment problem by Lagrangian relax-
ation and the hydroelectric unit commitment at reservoir level by dynamic program-
ming based on priority lists, which help to reduce the number of possible combinations. 
These authors combine all available units of the hydroelectric plants into an equivalent 
unit using an input/output aggregate curve. They reallocate the water flow from the res-
ervoir, increasing its discharge in hours in which its marginal value is high, reducing it 
when it is low. Then, they update the water marginal value and repeat the allocation of 
hydro units until meeting the convergence criterion. Using dynamic constraints, they 
include issues such as the minimization of the time that units must be switched on and 
off, which helps to reduce the start-up and operating costs.

Li et al. (1997b) consider all available units on during the study period. Usually, 
this starting point produces an excess of spinning reserve. To achieve an economic 
operation, some units are shut down during certain periods. According to the evalu-
ation of some economic indicators related to the relative cost savings, which unit 
should be shut down first is decided, then, the same is done with the other units. The 
procedure continues until one of the following three stopping criteria is satisfied: (i) 
it is not possible to obtain further reductions in cost; (ii) the unit scheduling in two 
consecutive iterations remains unchanged; and/or (iii) savings are zero for all remain-
ing units.

The hydroelectric generation unit commitment problem is explicitly addressed in our 
research as it is considered an important component to optimize the operation and to 
evaluate the technical efficiency of a hydroelectric generation company (H-GENCO). 
This problem can be studied independently to determine self-programming at mini-
mum cost of an H-GENCO in the day-ahead market (Conejo et al., 2002). However, it 
can also be considered as one of the subproblems of a short-term hydrothermal coordi-
nation problem solved by decomposition methods, such as Lagrangian relaxation, of a 
profit-maximizing company that seeks maximum technical efficiency in the operation 
of its generating plants.
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7.1.2  Bidding Strategies in the Day-Ahead Market

With the restructuring of electric power systems, markets have evolved from vertically 
integrated monopolies to competitive schemes. Pool-based electricity markets have 
expanded into regions and countries around the world such as South America 
(Hammons et al., 2002), Spain (González and Basagoiti, 1999), New England (Cheung 
et al., 2000), and Norway (Fosso et al., 1999). As a result, market agents need to imple-
ment new strategies and methodologies to achieve higher efficiency in order to be 
 competitive. This has led to profound changes in the procedures used by the generating 
companies to ensure safe and efficient operation, significantly changing the way they get 
their benefits.

Competition creates new markets where buyers and sellers can conduct electricity 
trade by auctions in the energy pool or by bilateral contracts. Therefore, cost minimiza-
tion techniques are being replaced by offer algorithms made by generators to maximize 
their profits and, in some markets, by consumers seeking to maximize their utility 
 functions. Prices are determined by market agents’ interactions. Due to these reforms, 
generating companies have been forced to adapt to a new way of understanding their 
business. The traditional institutional framework that usually guaranteed the generat-
ing companies the recovery of their full cost has been replaced by a competitive frame-
work in which the incomes of each company depend on its own ability to sell the energy 
produced by its plants. For decades, before competition, complex models were used in 
operation and planning, focusing on different stages of decision-making for the provi-
sion of electricity trying to minimize production costs. However, the competitive 
 operation of a deregulated power industry is the result of the interaction of different 
actors with different objectives.

Our study is related to the operation of a price-taking H-GENCO owner of a system 
of cascaded plants along a river basin. A short-term framework is considered, focusing 
on the day-ahead market. Therefore, the medium- and long-term decisions may be 
 considered as exogenous variables for the company, whose evaluation is outside the 
scope of this work. As the production schedule of a price-taking firm does not affect 
market prices, these prices can be assumed known or predicted (Szkuta et  al., 1999; 
Angelus, 2001; Nogales et al., 2002). A company that develops bid strategies in perfectly 
competitive markets has incentives to bid at marginal costs, as these markets involve 
many small producers, and it is not possible for any of them to influence the market 
price. Thus, each producer must accept this price, which is fully described by the market 
conditions (Ladurantaye et al., 2007; Fleten and Pettersen, 2005; Conejo, Nogales, and 
Arroyo, 2002; Gross and Finlay, 2000).

Thermal bidding strategies that maximize the expected net incomes can show that the 
optimal strategy is to offer at prices reflecting the variable operating costs of the thermal 
plant as these variable costs are a function of the fuel costs. In hydro units the bidder may 
postpone its energy production if future prices are higher than at present. The hydro-
power plant variable costs are in fact opportunity costs depending on both future hydro-
logical scenarios and expected load, and, most importantly, future production by other 
generator companies. The hydropower plant opportunity cost calculation is a complex 
stochastic dynamic optimization problem (Pereira and Pinto, 1991; Pereira et al., 1998). 
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Pereira et al. (2005) present a solution to the strategic bidding problem in short-term elec-
tricity markets using a binary expansion scheme to transform the nonlinear and noncon-
vex problem into a mixed-integer linear program. De la Torre et  al. (2003) study the 
nonconvex residual demand function by a Cournot scheme using a mixed-integer pro-
gramming model.

7.1.3  Variable Head Problem in Hydroelectric Systems

A hydroelectric generating unit has a complex operational performance. Its power out-
put depends mainly on three variables: the net head, the water discharge to the turbine, 
and the turbine-generator set efficiency. The net head is a nonlinear function of several 
variables, which can include the water storage in the reservoir, the flow discharged to the 
turbine, and the water tail level (in reaction turbines). The turbine-generator set  efficiency 
is a nonlinear function of the net head and the water discharge. Furthermore, because of 
technical constraints, there are upper and lower limits for the permitted discharges to 
the turbines. Discharges below the lower limits would cause mechanical vibrations 
(which would cause oscillation in the power output), cavitation, and low efficiency levels. 
Additionally, these units may have large prohibited operation areas that do not allow a 
continuous range in the generation, making the problem more complex and its solution 
more difficult due to the associated combinatorial nature (Finardi and da Silva, 2006).

The so-called performance curves of the hydroelectric generating units represent the 
power generated as a function of the water discharge. Most models related to these per-
formance curves ignore the variable head effect in order to avoid nonlinearities and 
nonconcavities that could lead to local optima. However, such simplifications can lead to 
inaccuracies. Simple performance curves have been used, by taking approximations 
such as concave piecewise linear functions (Habibollahzadeh and Bubenko, 1986; Chang 
et  al., 2001) and by modeling the so-called local best efficiency points (Nilsson and 
Sjelvgren, 1997b; Nilsson et al., 1998).

The variable head effects in hydropower systems have been studied, among others, by 
Li, Johnson and Svoboda (1997), García-González et  al. (2003, 2007), Parrilla and 
García-González (2006), and Catalão et al. (2006, 2009). García-González et al. (2007) 
consider a model based on profits, with two risk aversion criteria: maximum profit 
Value-at Risk (VaR) and minimum Conditional Value-at-Risk (CVaR). The problem is 
solved by an iterative procedure with piecewise linear approximations.

Conejo et al. (2002) formulate and solve a mixed-integer linear programming model 
that assigns three different levels of water stored in reservoirs (low, medium, and high) 
to the unit performance curves; binary variables are used to select the performance 
curve for each of these three levels and to model each of the nonconcave curves. Borghetti 
et al. (2008) consider a single reservoir and a hydroelectric plant with multiple pumping 
units to propose an improvement of the previous approach in two steps: (i) an extension 
of Conejo et al. (2002) to slightly generalize their approach to a parametric number of 
water volumes, and (ii) an enhanced linearization with a more accurate estimation of 
the upper bound on the power production through a convex combination method con-
sidering both volumes and discharges. In our work, these curves are modeled by a con-
tinuous function that allows us to represent the nonconcavities where, unlike Nilsson 
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and Sjelvgren (1997a,b), the plant operation is not restricted to the local best efficiency 
points, that is, the curves are appropriate to represent the global nonconcavity.

García-González et al. (2003) propose a combination of heuristics to find an initial 
feasible integer solution using branch and bound methods (Nilsson and Sjelvgren, 1995). 
Then, they do a search on the feasible solution space. García-González et  al. (2007) 
 consider the possible start-up costs and the variable head effects.

Catalão et al. (2006) analyze the short-term behavior of head-dependent reservoirs. 
They show that the role played by reservoirs depends not only on their relative position 
in the system but also on the physical data that define the hydro chain parameters. 
Power generation is assumed to be a function of the water discharge and the plant 
 efficiency. For each plant, they assume that the efficiency is a linear function of the head 
and the latter is a function of the storage levels both in the reservoir itself and in the next 
one in the chain. For each reservoir, the authors assume that the water level is a linear 
function of the water volume stored. In this way, power generation is a nonlinear func-
tion of the water discharge and the volumes stored both in the reservoir itself and in the 
next one in the chain. Indefinite quadratic programming is used to solve this problem. 
Through a case study consisting of a system with three cascaded reservoirs, they show 
that the optimization process postpones power generation in the early periods to achieve 
high levels of storage in plants with higher technical efficiencies. Results are compared 
with a linear programming method, which ignores head dependency, finding increases 
in benefits between 2.21% and 7.86%, with a similar computational effort.

7.2   Development of an Optimization Model 
for Hydroelectric Operation

7.2.1  Introduction

Traditional methodological approaches applied to the analysis of hydrothermal sys-
tems usually begin with a long-term aggregate system. The system is broken down and 
economic signals related to hydrological and electricity price scenarios are sent to the 
short- and medium-term markets. In planning and programming these systems, the 
medium-term operation policy is a combination of hydrological and pricing stochastic 
forecasts, maintenance planning, and economic factors. The day-ahead hydroelectric 
operation programming process begins with the assessment of the mid-term operation 
policy to determine the amount of water to be discharged. This is based on forecasts of 
both the next-day market price as the water flows into the reservoirs and the company’s 
commitments previously acquired related to its electricity sales. The result is a set of 
optimal water discharges for each plant in each time period, which depends on the cur-
rent reservoir levels, the inflow forecasts, the electricity price forecasts in the short- and 
medium-term markets, and the contract portfolio that the company has undertaken.

In this work, we propose a complementary approach that considers a detailed analysis 
of the main features of the hydroelectric generation units. In day-ahead operation it is 
important to describe the relationship between the discharged water and the output 
power. We consider an H-GENCO that owns a cascaded reservoir system along a river 
basin. Beginning with the available information about the system state, in light of both 
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hydrological and electricity price short-term forecasts, the model proposed can be use-
ful for a company to make appropriate decisions regarding the bids to be submitted to 
the electricity pool in the day-ahead market. Thus, a detailed analysis of the current state 
and the cascaded reservoir system’s physical behavior can yield useful information for 
the development of progressive adjustments to the available economic signals. The latter 
are obtained through medium- and long-term scenarios with high uncertainty, which 
could be gradually reduced. The problem of satisfying consumer demand is the sole 
responsibility of the market operator but not of the generator units whose main objec-
tive is to maximize their profits.

The technical efficiency of the hydro units is a key component to evaluate the variable 
head effects and to make decisions regarding the hydroelectric generating unit commit-
ment, bidding in the day-ahead market, and self-programming, according to the eco-
nomic dispatch by the market operator. In that regard, we present a model that allows us 
to consider the H-GENCO integrating all its plants. This methodological approach can 
serve as an additional input for a hydroelectric company to formulate its short-term 
market strategies and, possibly, to design a decision support system to improve technical 
and economic performances.

In traditional approaches of monopolistic centralized systems, the optimization cri-
terion was the minimization of the total operating costs for the whole scheduling hori-
zon. In the new competitive markets, this approach is replaced by profit maximization. 
In our research, we also consider technical efficiency of a hydro unit, which is modeled 
as a function of the net head and the water discharge. This allows us to evaluate the 
variable head effects in the estimation of the hydroelectric plant power output.

The remainder of this chapter is organized as follows. Section 7.2.2 refers to the 
hydroelectric power production function model considering variable head effects. In 
Section 7.2.3, a statistical regression procedure is developed to represent the hydroelec-
tric generating unit technical efficiency as a quadratic function of the net head and the 
water discharge. The model constraints are formulated in Section 7.2.4. The measures of 
risk, VaR and CVaR, are presented in Section 7.2.5. The profit maximization objective 
function is defined in Section 7.2.6. The computational strategy to solve the problem is 
shown in Section 7.2.7. A case study of the Duero river basin in Spain is examined in 
Section 7.3 and relevant conclusions are presented in Section 7.4.

7.2.2  Hydroelectric Power Production Function

The power output of a hydroelectric generating unit i in time period t, expressed in 
megawatts (MW), can be written as in Equation 7.1, where efi(i,t) represents the unit 
efficiency in percentage, q(i,t) the water discharge to the turbine in cubic meter per sec-
ond (m3/s), and h(i,t) the net head in meters (m).

 p i t i t h i t q i t i I t T( , ) . ( , ) ( , ) ( , ) ,= × × × × ∀ ∈ ∀ ∈−9 81 10 3 efi  (7.1)

This power function has traditionally been represented by the so-called performance 
curves that express the power output as a function of the water discharge. To simplify its 



7-7Optimal Self-Schedule of a Hydro Producer under Uncertainty

representation and trying to avoid nonlinearities and nonconcavities that could lead to 
local optima, simple performance curves have been used, such as linear functions, con-
cave piecewise linear approximations (Habibollahzadeh and Bubenko, 1986; Chang 
et al., 2001), or modeling the so-called local best efficiency points (Nilsson and Sjelvgren, 
1997b; Nilsson et al., 1998). In all these cases, the problems associated with hydroelectric 
power have been addressed with linear programming techniques (Guan et  al., 1999). 
However, these simplifications can lead to inaccuracies.

Exploiting some special features of certain constraints, the problems associated 
with hydroelectric power have been formulated as network flow programs, whose 
solution is faster than the one obtained by standard linear programming algorithms. 
Brännlund et  al. (1986) use a network flow technique combined with dynamic 
 programming. Different techniques and methodologies have been proposed to get 
greater benefits in hydroelectric generation (Alley, 1977; Guan et al., 1995). Approaches 
such as capacity curves, dynamic programming, Lagrangian relaxation, and heuristic 
methods have been used. Some more complex and sophisticated models address the 
problem of  optimality more realistically. Deng et al. (2004) present a stochastic pro-
gramming framework; Legalov and Palamarchuk (2005) propose a dynamic program-
ming model; Valenzuela and Mazumdar (2001) apply stochastic optimization to 
maximize generator profits; Dentcheva et  al. (1996) use a recursive procedure with 
primal and dual  methodologies in a mixed-integer linear programming model; and 
Correa et  al. (2007) incorporate interior point methods and transmission network 
constraints.

Hydroelectric power is a nonlinear and nonconvex function of the water discharge 
(Finardi and da Silva, 2006; Siu et al., 2001; Wang et al., 2004). Siu et al. (2001) develop a 
model of the British Columbia Hydro Power Authority system in Canada and apply it to 
a 2700 MW plant with 10 units of four different types. Through an example, this model 
shows that allocating all available units in a plant could produce a 15% efficiency loss or 
an energy equivalent to 80 MWh. Wang et al. (2004) use a function for each hydraulic 
head and quadratic approximations for the relationship between power and discharge. 
Ferrer (2004) considers the reservoir gross head as a cubic polynomial of the water 
 volume and a quadratic function of the water discharge; the unit efficiency is assumed to 
be a second-degree concave polynomial of the water discharge, and the power output a 
fourth-degree polynomial.

Although the literature related to the problem is abundant, models that explicitly 
consider technical efficiency of hydroelectric generating units have not been found. In 
this chapter, the performance curves of these units are represented through continuous 
nonlinear functions to deal with nonconcavities where, unlike Nilsson and Sjelvgren 
(1997b), the operation of the units is not limited to the best local efficiency points, that 
is, the curves are suitable to represent global nonconcavity. Therefore, our study devel-
ops a mixed-integer nonlinear programming (MINLP) model of the operation of an 
H-GENCO that owns a cascaded reservoir chain along a river basin in the context of a 
short-term market. In this way, it is possible to get a better estimate of the generated 
power and to achieve significant water savings when considering the technical efficiency 
in the operation of hydroelectric plants.
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7.2.3   Technical Efficiency of the Generating Units as a 
Function of the Net Head and the Water Discharge

A hydroelectric generating unit has a complex operational performance. Its power gen-
eration depends on three variables: the net head, the water discharge to the turbines, and 
the technical efficiency of the turbine-generator set. The net head is a nonlinear function 
of variables such as the gross head (associated with the reservoir water volume), the 
water discharge, and the water level in the reservoir tail. Moreover, the turbine efficiency 
is a nonlinear function of the net head and the water discharge.

Many related works consider the net head, the water discharge, and the technical 
efficiency as parameters with average values for the scheduling horizon, leading to 
the formulation of the power output as a linear function of the water discharge 
(Velásquez et  al., 1999; Campo and Restrepo, 2004; Catalão et  al., 2006, 2009). 
Considering these two magnitudes as variables, the net head and the technical effi-
ciency of the units, could complicate the problem of calculating the generated power 
of a hydroelectric plant. However, this can have significant effects, as it allows us to 
get more accurate and useful results for making appropriate decisions in short-term 
electricity markets.

Our research begins with the information available from the manufacturers usually 
denoted as efficiency graphs at different levels, depending on the net head and the water 
discharge. The graphs are known as “Hill diagrams,” such as the one illustrated in 
Figure 7.1 adapted from Díaz (2009) and Finardi (2003). In this figure, for any pair (net 
head, water discharge) associated with any point of the feasible operating region, it is 
possible to read the turbine efficiency (and the power output). A reaction turbine is con-
sidered; in this case, the efficiency of a Francis turbine is represented as a quadratic func-
tion of the net head and the water discharge; in this way, the adjusted model using 
multiple nonlinear regression is presented in Equation 7.2, while ignoring the subscripts 
and using the following notation:

 η β β β β β β= + + + + +0 1 2 3
2

4
2

5h q h q hq  (7.2)

where η represents the efficiency of a hydroelectric generating unit in percentage (%), 
h the net head (m), q the discharge of water to the turbine (m3/s), and βi (i = 0, 1, 2, . . ., 5) 
the parameters of the regression model (to estimate).

The procedure used to represent the technical efficiency as a quadratic function of 
the net head and the water discharge is based on the development of a multivariable 
nonlinear statistical regression analysis described as follows. It starts by reading 
378  points from the curves in Figure 7.1 using the text and image viewer GSview, 
 version 4.7, for Postscript files. Then, an algorithm programmed in the statistical 
 package R, version 2.4.1, is used to transform the data to the original scale. With these 
378 records, the regression model is adjusted in expression 7.2 to estimate the βi (i = 0, 
1, 2, . . ., 5) parameters and the fitted model of expression 7.3 is obtained. The statistical 
tests t and F are fulfilled, giving an adjusted R2 equal to 0.82, meaning that the model 
explains approximately 82% of the data variability in the corresponding sampling 
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 intervals. According to the values found in the p, t, and F tests, all the proposed param-
eters are significantly different from zero. Figure 7.2 shows the graphs of the sampled 
points and the fitted model.

 E h q h q h q( , ) . . . . . .η/ = − + + − −1 37 0 0773 0 00502 0 00131 0 0000191 0 002 2 + 00121hq (7.3)

From the above results, it can be concluded that expression 7.3 is a good adjusted 
model to estimate the efficiency of the hydroelectric generating units as a quadratic 
function of the net head, in meters (m), and the water discharge, in cubic meters per 
second (m3/s). Thus, for any couple (net head, water discharge) associated with any point 
of the feasible operating region, the above expression can be used to estimate the turbine 
efficiency, from which it is possible to calculate the power output, in megawatts (MW), 
using Equation 7.1. The water discharge to the unit i at time t is considered as the deci-
sion or control variable, and the net head is a variable that depends on the volume of 
water stored in the reservoir.
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After statistical validation of the results obtained by multiple nonlinear regressions, 
the adjusted model is subject to mathematical validation considering the efficiency as 
the above quadratic function of the net head and water discharge. Using mathematical 
analysis applied to this function, its optimal point is found, which coincides with the 
design point of the turbine, as expected, and as detailed below.

Every turbine is designed to operate with nominal or design parameters: net 
head (hd) and water discharge (qd). The pair (hd,qd) is known as the design point. In the 
Hill  diagram of Figure 7.1 these parameters take approximate values of 41.67 m and 
262.43 m3/s, respectively, where the turbine gets its maximum efficiency or its optimal 
performance, close to 94%. Moreover, for any point of the feasible operation region asso-
ciated with the pair (h,q), where h represents the net head, and q the water discharge, it 
is possible to read the turbine efficiency. Operating far from these parameters will make 
the electrical power production process inefficient.

Díaz (2009) proposes as a working hypothesis, the existence of a trajectory of maxi-
mum relative efficiency, which depends on the level reached by the net head, for which 
the optimal discharge of maximum relative efficiency is possible to obtain from the Hill 
diagram with the aforementioned net head. The optimal discharge, for a given net head, 
can be found, by optimization, by equating to zero the partial derivative of the efficiency 
function with respect to the discharge, δη/δq = 0 (for which h is considered a constant), 
and solving the resulting equation for the discharge, q, as a function of the net head, h. 
In the case of expression 7.3, expression 7.4 is obtained, from which q can be expressed 
as a linear function of h, as in expression 7.5.

 δη δ β β β/ q q h= + +2 4 52  (7.4)

 q h= −( ) − ( ) ×β β β β2 4 5 42 2/ /  (7.5)

The technical efficiency of a Francis turbine is approximated by a bivariable quadratic 
model, as specified in Equation 7.3, from which a linear function that allows us to obtain 
the maximum relative efficiency discharge associated with a given net head is obtained. 
For this couple (net head, water discharge), it is possible to calculate both the turbine 
efficiency, and the power output, that is, the power level at maximum relative efficiency 
can be obtained. This discharge of maximum relative efficiency provides useful infor-
mation for a price-taker hydropower company to make decisions regarding the commit-
ment of its generating units, bidding, and self-programming after the market operator 
performs economic dispatch.

Using a procedure similar to that used to find the discharge at maximum relative effi-
ciency for a given net head, we equate to zero the partial derivative of the efficiency, this 
time with respect to the net head, δη/δh = 0, considering the discharge q as constant:

 δη δ β β β/ h h q= + +1 3 52  (7.6)

From the above analysis, a system of two simultaneous linear equations with two 
variables is obtained, Equations 7.4 and 7.6, whose solution must reproduce the design 
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point of the Hill diagram. For the numerical example of the case study, a system of two 
simultaneous linear equations with two variables, h and q, is formulated as shown below.

 q h= + ×131 4136 2 1675. .

 h q= + ×29 5038 0 0462. .

The solution of this system, except for rounding errors, replicates the design point, 
observed in the Hill diagram; see Figure 7.1 (hd, qd) = (41.67, 262.43). The advantage of hav-
ing an analytic function of this type is the possibility of developing a mathematical proce-
dure for decision-making. For example, to obtain the optimal discharge in the short-term 
(hourly, daily, etc.) is possible, given a good approximation of the net head. Thus, we are also 
able to obtain the daily or hourly operation at maximum efficiency of the generation units.

7.2.4  Constraints on the Hydroelectric Generation System

The constraints of a hydropower system are represented by expressions 7.7 through 7.28. 
Then, they will be represented in blocks.

7.2.4.1  Water Balance Equations

The equality constraints Equation 7.7 presented below represent the continuity equa-
tions of the reservoirs. In each reservoir, the water volume in the current period is cal-
culated as the volume in the previous period, plus the total inflow to the reservoir (both 
the natural inflow and the contributions from upstream reservoirs), less the reservoir 
total outflow, formed by both the water discharge to the turbines and the spillage. The M 
constant, equal to 0.0036, is a conversion factor from m3/s to Hm3/h. The water travel 
time from a reservoir to the next one downstream is one hour. The transition matrix 
MATtra(i,j) is composed of binary values which are equal to 1 if the reservoir i receives 
flows from reservoir j upstream, and 0 otherwise.

 

vol( ) vol( 1) W( ) * MATtra( )

*[ ( , 1) ve

j Ji,t i,t i,t M i, j

q j t

= − + +

− +

∑ ∈{
rr( , 1)]  ( ) ver( )j t q i,t i,t− − − }  (7.7)

7.2.4.2  Constraints on the Reservoirs

In the following, the limits of the stored water volume, the net head, and the spillage are 
shown. In Equation 7.8, the volume of reservoir i during time period t must remain 
between its lower and upper limits. In Equation 7.9, the net head is bounded by its mini-
mum and maximum values. In Equation 7.10, the reservoir spillage associated to plant i 
is bounded by its maximum capacity, VERmax(i).

 VOL vol VOLmin( ) ( , ) max( )i i t i i I≤ ≤ ∀ ∈  (7.8)

 H Hmin( ) ( , ) max( )i h i t i i I≤ ≤ ∀ ∈  (7.9)

 ver VER( , ) max( ) ,i t i i I t T≤ ∀ ∈ ∀ ∈  (7.10)
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7.2.4.3  Constraints on the Hydroelectric Generating Units

The limits of the water discharge to the turbines, the power generation, and the volume 
discharged during the scheduling horizon are shown in constraints 7.11 through 7.13. In 
Equation 7.11, as established by the v(i,t) binary variables, the water discharge to the 
turbine associated with plant i in period t must remain within its upper and lower 
bounds, if the turbine is on, then v(i,t) = 1; but if the turbine is off, then v(i,t) = 0, and the 
discharge is also equal to 0. Expression 7.12 is similar to expression 7.11, where the power 
is bounded by its minimum and maximum limits. In Equation 7.13, the total discharged 
volume in cubic hectometers (Hm3) is calculated in each reservoir for the entire schedul-
ing horizon.

 Q Qmin( ) * ( , ) ( , ) max( ) * ( , ) ,i v i t q i t i v i t i I t T≤ ≤ ∀ ∈ ∀ ∈  (7.11)

 P Pmin( ) * ( , ) ( , ) max( ) * ( , ) ,i v i t p i t i v i t i I t T≤ ≤ ∀ ∈ ∀ ∈  (7.12)

 
VOLdes( ) * ( , )i M q i t i I

t T

= ∀ ∈
∈
∑

 
(7.13)

7.2.4.4  Computation of the Net Head

In this section, the net head for each reservoir in each time period is calculated. In 
Equation 7.14 the water level in the upstream reservoir of plant i for each time period t, 
Nsup(i,t), is computed as a quadratic function of the stored water volume, whose param-
eters, a0(i), a1(i), and a2(i), are assumed to be known. In Equation 7.15 the lower level, 
Ninf(i,t) is estimated as a function of the elevation tail downstream of plant i, depending 
on the water discharge q during time period t. In Equation 7.16 the hydraulic losses, 
per(i,t), are calculated, and in Equation 7.17 the net head is computed.

 N vol volsup( , ) ( ) ( ) * ( , ) ( ) * ( , ) ,i t a i a i i t a i i t i I t T= + + ∀ ∈ ∀ ∈0 1 2 2
 (7.14)

 Ninf ( ) ( ) ( )i t b b q i t b q i t, * , * ,= + +0 1 2
2
 

(7.15)

 per( ) ( )i t C q i t, * ,= 2
 (7.16)

 h i t i t i t i t( ) Nsup( ) Ninf ( ) per( ), , , ,= − −  (7.17)

7.2.4.5  Scaling the Hill Diagram

It is assumed that each plant operates with a Francis turbine, or its equivalent, repre-
sented by a Hill diagram similar to the one in Figure 7.1, which, from this point, will 
be considered as associated with a standard turbine, whose values of net head and 
water discharge will be referred to as “hest” and “qest,” respectively. However, it is 
 considered that each turbine has its own design parameters, net head and water dis-
charge, h and q, respectively, associated with its own Hill diagram. For this reason, a 
scaling of the Hill diagram associated with each of the individual turbines is required 



7-14 Electric Power Systems

to match the measurement scale of the latter with the corresponding one of a standard 
turbine. This can be accomplished by a linear transformation of the data in each of the 
axes, net head and water discharge.

A linear transformation from the values h(i,t) to their corresponding ones in the scale 
of the standard turbine, hest(i,t), is performed to scale the axis of the net head in each res-
ervoir i, according to the linear function 7.18, where the slope, mhest(i), is calculated as in 
Equation 7.19. Using the first equation, and making h(i,t) = Hmin(i), hest(i,t) = Hmin(0) is 
obtained, verifying that the minimum net head of turbine i, Hmin(i) is associated with the 
corresponding minimal head of a standard turbine, Hmin(0). This correspondence is also 
valid for the maximum heads, where Hmax(i) is associated with Hmax(0), which can be 
verified by making h(i,t) = Hmax(i) to find hest(i,t) = Hmax(0), using both Equations 7.18 
and 7.19.

 hest H mhest H( , ) min( ) ( ) * [ ( , ) min( )] ,i t i h i t i i I t T= + − ∀ ∈ ∀ ∈0  (7.18)

 mhest H H H H( ) [ max( ) min( )] / [ max( ) min( )]i i i i I= − − ∀ ∈0 0  (7.19)

Similar to scale the axis of the water discharge in each reservoir i, a transformation of 
the values q(i,t) to their corresponding ones in the scale of the standard turbine qest(i,t) 
is performed by the function 7.20. The latter is a nonlinear function because of the pres-
ence of the v(i,t) binary variables whose appearance will be explained below. The slope 
mqest(i) is calculated as in Equation 7.21. Likewise the net head case, we replace q(i,t) by 
both its minimum and maximum values, Qmin(i) and Qmax(i), in turbine i. It is possi-
ble to verify that these values are associated with the corresponding minimum and 
maximum discharges of the standard turbine, Qmin(0) and Qmax(0), respectively. 
However, there is a problem when the turbine is off and, therefore, its discharge is zero. 
This change of scale for the discharge values works provided that the discharge is within 
the limits specified by the technical parameters of the turbine, Qmin(i) and Qmax(i), 
when the turbine is on; however, when the turbine is off, the discharge q(i,t) is 0, making 
the factor [q(i,t) − Qmin(i)] negative, as well as the product of this factor by the positive 
constant mqest(i). This product, subtracted from Qmin(0), would yield a value of qest(i,t) 
lower than the minimum discharge Qmin(0), which would cause an error for positive 
values of this latter parameter. To solve this difficulty, analyzing the constraints 7.11, the 
equivalence q(i,t) = 0 ↔ v(i,t) = 0 can be derived, showing the double implication as it is 
done below. If q(i,t) = 0, then Qmin(i)*v(i,t) = 0, considering the left side of the con-
straints 7.11, which implies that v(i,t) = 0, as Qmin(i) is a positive constant. On the other 
hand, if v(i,t)= 0, then, using the constraints 7.11, we obtain 0 ≤ q(i,t) ≤ 0, which implies 
that q(i,t) = 0. Therefore, the water discharge to the standard turbine can be represented 
in general as shown in Equation 7.20, and it is valid in both cases, when the turbine is on, 
v(i,t) = 1, and when it is off, v(i,t) = 0.

 qest Q mqest Q( , ) { min( ) ( ) * [ ( , ) min( )]} * ( , ) ,i t i q i t i v i t i I= + − ∀ ∈ ∀0 tt T∈  (7.20)

 mqest Q Q Q Q( ) [ max( ) min( )] / [ max( ) min( )]i i i i I= − − ∀ ∈0 0  (7.21)
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7.2.4.6   Calculation of the Technical Efficiency of the 
Generation Units and the Power Output

The changes of scale in the net head and water discharge axes allow us to calculate the 
technical efficiency of the generating units using Equation 7.3, as shown in Equation 
7.22, and the power output using Equation 7.1, as shown in Equation 7.23.

 

efi hest qest hest qest( , ) ( , ) ( , ) ( , ) (i t i t i t i t i= + + + +β β β β β0 1 2 3
2

4
2 ,, )

( , )* ( , ) * ( , ) ,

t

i t i t v i t i I t T
{
+ } ∀ ∈ ∀ ∈β5hest qest  (7.22)

 p efi( , ) . * ( , ) * ( , ) * ( , ) ,i t h i t q i t i t i I t T= ∀ ∈ ∀ ∈0 00981  (7.23)

7.2.4.7  Modeling of the Start-up and Shutdown of Units

The nonnegative variables used in the model are shown in Equations 7.24 and 7.25. The 
constraints 7.26 and 7.27 use binary variables as specified in Equation 7.28 in order to 
model the dynamics of the start-up and shutdown of the plants during the scheduling 
horizon (Brännlund et  al., 1986). The z(i,t) variables may seem superfluous, as they 
appear only in these two constraints. However, numerical simulations have shown their 
ability to significantly reduce the computation time (Conejo et al., 2002). The discharge, 
q(i,t), standard discharge, qest(i,t), efficiency, efi(i,t), and power, p(i,t) are equal to 0 if 
plant i is off (offline) in period t, that is, if v(i,t) = 0.

efi hest qest ver( , ), ( , ), ( , ), ( , ), ( , ), ( , ), ( , )i t h i t i t p i t q i t i t i t ,, ( , ) ,vol i t i I t T≥ ∀ ∈ ∀ ∈0  (7.24)

 COSenc INGope INGvfa VOLdes( ), ( ), ( ), ( )i i i i i I≥ ∀ ∈0  (7.25)

 y i t z i t v i t v i t i I t T( , ) ( , ) ( , ) ( , ) ,− = − − ∀ ∈ ∀ ∈1  (7.26)

 y i t z i t i I t T( , ) ( , ) ,+ ≤ ∀ ∈ ∀ ∈1  (7.27)

 v i t y i t z i t i I t T( , ), ( , ), ( , ) { , } ,∈ ∀ ∈ ∀ ∈0 1  (7.28)

7.2.5  Measures of Risk: VaR and CVaR

VaR is a measure computed as the maximum profit value such that the probability of the 
profit being lower than or equal to this value is lower than or equal to 1 – δ:

 
VaR max{ / }= ≤ ≤x p B x( ) 1 − δ

 
(7.29)

Usually, δ ranges between 0.9 and 0.99 (Conejo et al., 2008). In this study, δ is consid-
ered equal to 0.95.
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CVaR is the expected profit not exceeding a measure ζ called VaR:

 CVaR /= ≤( )E B B ζ  
(7.30)

Mathematically, CVaR can be defined as

 
maxζ

δ
ρ η−

− =∑1
1 1

n n
n

N

 
(7.31)

subject to

 − + ≤Bn nζ η− 0  (7.32)

 ηn ≥ 0  (7.33)

In Equation 7.32, ηn is equal to zero if scenario n has a profit greater than ζ. For the 
remaining scenarios, ηn is equal to the difference between ζ and the corresponding 
profit.

For stochastic problems, VaR has the difficulty of requiring the use of binary variables 
for its modeling. Instead, CVaR computation does not require the use of binary variables 
and it can be modeled by the simple use of linear constraints. CVaR represents an appro-
priate approach to address risk management for a hydropower producer. However, pre-
vious MINLP approaches (Catalão et al., 2010; Díaz et al., 2011) did not consider risk 
management.

The concepts of VaR and CVaR are illustrated in Figure 7.3.
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FIGURE 7.3 Value-at-Risk and conditional Value-at-Risk.
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7.2.6   Objective Function: Profit Maximization 
and CVaR-Based Profit Maximization

The purpose of any H-GENCO in an electricity market is to maximize its own profit, 
calculated as the difference between its incomes and its total operating costs. The pro-
duction costs are negligible for an H-GENCO. The most significant ones are the start-
up costs of the units that are mainly caused by the additional maintenance required 
for the mechanical equipment and the malfunction of the control equipment. Thus, 
the profit maximization objective function can be expressed as in Equation 7.34, 
where the total profit of the system is the sum of the profits of each of its plants, and is 
composed of three terms: (i) the operating income, (ii) the income from the future 
value of the water stored in the reservoir at the end of the programming period as 
defined by a medium- or long-term model, and (iii) the start-up cost, according to the 
plant type (Nilsson and Sjelvgren, 1997a,b).

In Equation 7.35, the operating income of each plant belonging to the H-GENCO is 
calculated as the sum of the electricity prices multiplied by the power output in all time 
periods. In Equation 7.36, the income from the future water value is obtained as the 
volume stored in the last period multiplied by a constant that represents the future water 
value of reservoir i, VFA(i). In Equation 7.37, the start-up costs for the scheduling hori-
zon are represented as the sum of the respective start-up costs for the time periods when 
the unit is on, that is, when y(i,t) = 1.

 
Max Z INGope INGvfa COSenc= + −

∈
∑[ ( ) ( ) ( )]i i i
i I  

(7.34)

where

 
INGope( ) [ ( ) * ( , )]i L t p i t i I

t T

= ∀ ∈
∈
∑

 
(7.35)

 INGvfa vol NT VFA( ) ( , ) *i i i I= ∀ ∈  
(7.36)

 
COSenc SU( ) [ ( ) * ( , )]i i y i t i I

t T

= ∀ ∈
∈
∑

 
(7.37)

In the short-term hydro scheduling problem under consideration, the objective 
 function takes into account all the price scenarios at once weighted by their occurrence 
probability. The problem can be formulated to maximize

 
J Bn n n nn

N

n

N
= −

−
⎡
⎣⎢

⎤
⎦⎥+

== ∑∑ ρ α ζ
δ

ρ η
1

1 11  
(7.38)
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In Equation 7.38, ρn is the probability associated with scenario n, α is the positive 
weighting factor to achieve an appropriate trade-off between profit and risk, and ζ is the 
VaR at a confidence level of δ. Bn is the benefit for each price scenario, given by

 
Bn tn iti

I
=

=∑λ P
1  

(7.39)

where λtn is the energy price for scenario n at period t, and Pit is the power generation of 
plant i during period t.

7.2.7   Strategy for Solving the Hydroelectric Operation 
Scheduling Problem

Some nonlinear phenomena are often approximated using simplifying assumptions to 
find their solution by the application of linear programming techniques or some of 
their extensions, such as separable linear programming, successive linear program-
ming, or quadratic programming. However, these assumptions may be very far from 
the true behavior of the real system and, therefore, their results may be unreliable. In 
other cases, dynamic programming techniques, or some of their variants, are applied. 
Nonlinear programming techniques have great potential, although, in practice, they 
are rarely used.

The operation scheduling problem of an H-GENCO and its corresponding optimiza-
tion model, such as the one formulated in this chapter, is a large-scale MINLP, as it 
incorporates a number of nonlinear constraints, including binary decision variables and 
a long time horizon. Due to the complexity of the model formulated, the existence of an 
efficient method to find a global solution may not be guaranteed. Thus, the goal is to find 
a local optimal solution of good quality, using MINLP, adapted to the structure of the 
problem at hand.

The feasible region of a mathematical programming problem can be expressed in 
terms of equality and inequality constraints, as presented in the models developed 
throughout this chapter. The equality constraints are considered associated with the 
water balance in each reservoir in each time period and to the definition of the volumes 
discharged during the scheduling horizon, VOLdes(i). Furthermore, the model includes 
equality constraints associated with some definitions for each reservoir in each time 
period, such as the upper and lower levels of water storage, Nsup(i,t) and Ninf(i,t), 
respectively, the head loss in the pipelines, per(i,t), the net head, h(i,t), the discharge, 
q(i,t), the technical efficiency, efi(i,t), the power produced, p(i,t), and the equations 
defining the scaling variables of the turbines, hest(i,t), mhest(i,t), qest(i,t), and mqest(i,t). 
The inequality constraints are represented for each reservoir or hydroelectric plant 
associated and each time period by the operating limits for the water volume, vol(i,t), 
the net head, h(i,t), the spillage, ver(i,t), the water discharge, q(i,t), and the power gener-
ated, p(i,t).

The model can be viewed in the context of MINLP where there are nonlinear 
 functions, such as those used for calculating the water level in the reservoir upstream of 
the plant i, Nsup(i,t), in Equation 7.14, the level of the tail elevation at the discharge 
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point, Ninf(i,t), in Equation 7.15, the hydraulic losses, per(i,t), in Equation 7.16, the 
 standard discharge, qest(i,t), in Equation 7.20, the technical efficiency of the units, 
efi(i,t), in Equation 7.22, and the power output, p(i,t), in Equation 7.23. In addition, there 
are binary variables in Equations 7.11 and 7.12 to set lower and upper limits for the water 
discharge, in Equation 7.20 for the power output in order to calculate the standard dis-
charge, qest(i,t), in Equation 7.22 to estimate the technical efficiency, efi(i,t), and in 
Equations 7.26 and 7.27 to model the dynamics of start-up and shutdown of units. Binary 
variables appear in a linear function in Equation 7.20 and in a nonlinear one in Equation 
7.22.

The model is implemented in GAMS (Brooke et al., 2000) and it is solved using the 
SBB solver for branch and bound methods and the CONOPT optimizer for nonlinear 
programming.

7.3   Case Study: Hydroelectric Operation 
Scheduling for a Cascaded Reservoir 
System Along the Duero River in Spain

The aim of this study, as stated in the introduction, is to obtain the optimal hydroelectric 
generation resulting from the energy offers to the day-ahead market. In this section, the 
results of a realistic case study are presented and discussed. The system comprises eight 
cascaded plants along the Duero river basin in Spain, whose data are shown in Table 7.1, 
as taken from Conejo et al. (2002) for a period of one week of the year 2008. The infor-
mation and relevant assumptions are completed and updated, as presented below, to 
formulate and solve the model as an MINLP. The natural water inflow to each reservoir 
is assumed constant during the time horizon—in our case, 1 week divided into 168-h 
periods. The initial and final reservoir water volumes are known at the beginning of the 
study period. The latter ones, as well as the future water value, VFA, are usually obtained 
by medium- or long-term planning models (see Conejo et al., 2002).

The MINLP approach, which not only considers head-dependency and technical effi-
ciency of the units, but also price uncertainty and risk management, has been applied to 
a case study based on one important Spanish cascaded hydro system. This approach has 
been developed and implemented in GAMS (Brooke et al., 2000) and solved using the 

TABLE 7.1 Hydro System Data

Plant
Qmin(i) 
(m3/s)

Qmax(i) 
(m3/s)

VOLini(i) 
(Hm3)

VOLmin(i) 
(Hm3)

VOLmax(i) 
(Hm3)

W(i,t) 
(Hm3/h)

SU(i) 
(€)

Pmax(i) 
(MW)

VFA(i) 
(€/Hm3)

1 2 62 100 6 225 0.051 110 28.62 84.0
2 5 163 80 6 162 0.058 150 69.52 221.2
3 14 464 790 6 1200 0.603 200 139.05 630.0
4 19 662 33 6 66 0.051 250 116.38 900.2
5 18 628 13 6 26 0.051 350 186.66 854.0
6 14 479 1200 6 2586 0.199 1500 833.28 651.0
7 29 985 50 6 115 0.500 2000 1159.63 1338.4
8 30 1028 90 6 181 0.048 1000 550.90 1397.2
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optimization solver packages SBB and CONOPT. Numerical simulation has been per-
formed on a 600-MHz-based processor with 256 MB of RAM memory.

For the sake of simplicity, we develop a single scenario for a fixed water final volume, 
where, without loss of generality, we assume that the final water volume is equal to the 
initial one for each reservoir. Therefore, the production schedule is indifferent to the 
stored water future value, VFA(i), at the end of the period previously defined. A propor-
tional change in all VFA(i) would not affect the production schedule (volume discharged, 
VOLdes, and operative income, INGope), although the revenue from future water value, 
INGvfa, and the profit could change. Figure 7.4 shows the spatial coupling between 
reservoirs.

In the studies by Catalão et al. (2010) and Díaz et al. (2011), the energy prices are 
considered as deterministic input data. Instead, several price scenarios that could be 
obtained from price forecasting are considered in our work, taking the actual prices of 
the last 20 weeks of 2010 of the Iberian electricity market from www.omel.es. The 
prices related to these 20-week scenarios are shown in Figure 7.5 over the 168-h 
 horizon. The probability of occurrence of each generated scenario is, in this case, 1/20, 
this is 0.05.

1
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Reservoir

Plant

FIGURE 7.4 Hydraulic topology of the river basin.

www.omel.es
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The storage targets for the short-term time horizon, which are established by medium-
term planning studies, may be represented either by a penalty on water storage or by a 
previously determined future cost function (Uturbey and Simões Costa, 2007).

The expected profit versus profit standard deviation is presented in Figure 7.6, consid-
ering six values for α. This figure provides the maximum achievable expected profit for 
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each risk level or, alternatively, the minimum achievable risk level for each expected 
profit. An analysis of this figure, known as efficient frontier or Markowitz frontier, 
reveals that, for a risk-neutral producer (α = 0), the expected profit is approximately 
$561,700 with a standard deviation of $52,300. On the other hand, a risk-averse pro-
ducer (α = 1) expects to achieve a lower profit of $553,200 with a lower standard devia-
tion of $44,800.

For a detailed analysis we have selected plant 1, for which the water storage and 
water discharge are presented. The evolution of the reservoir volume associated with 
plant 1 and its discharge are shown in Figures 7.7 and 7.8, respectively. In particular, 
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the  optimal reservoir storage trajectories are shown in Figure 7.7 and the optimal 
plant discharge trajectories are shown in Figure 7.8. The dark lines denote the results 
obtained using a risk level α = 0, while the clear ones denote the results obtained using 
a risk level α = 1. Risk makes a different behavior possible, especially for the first res-
ervoir, implying that, for a risk-neutral producer, the influence of the head change 
effect is more relevant.

The results in these two figures are consistent. The risk-neutral producer aims at dis-
charging mostly during peak hours, obtaining maximum profit. Instead, by assuming 
higher values for the risk penalty factors, the number of online hours tends to decrease. 
Analyzing these figures, it can be verified that the risk level corresponding to α = 0 
implies a higher expected profit than for α = 1. However, α = 0 is riskier than α = 1, 
because a financial loss can occur under some scenarios. Thus, a risk-averse investor 
would prefer α = 1 because it gives almost the same expected profit level and exhibits 
lower financial risk. Hence, our model allows the decision-maker to obtain solutions 
according to the desired risk exposure level.

7.4  Conclusions

The main motivation of this paper is to provide a price-taker H-GENCO with a 
 short-term scheduling tool in a pool-based electricity market. In this study, the tech-
nical efficiency of hydro generating units is a key component for the analysis and the 
evaluation of the variable head effects, the hydroelectric generating unit commitment, 
and the bidding design in the day-ahead market. The technical efficiency estimation 
is  a quadratic function of the net head and water discharge resulting from a Hill 
 diagram supplied by the turbine manufacturer. A general formulation of the unit 
 performance curve as a continuous nonlinear and nonconcave function, incorporat-
ing the technical efficiency, is provided to overcome the inaccuracies of the discrete 
approaches.

The hydroelectric generating unit characteristics are modelled in detail in order to 
obtain a good approximation to the relation between the net head, the water discharge, 
and the technical efficiency. The mathematical functions formulated allow the adequate 
treatment of nonlinear and nonconcave unit performance curves. We have tested our 
models with case studies of the Spanish electric system related to a chain of reservoirs 
along the Duero river basin.

The main achievements associated to this work are listed below:

 1. A systematic and complete characterization of the operation of hydropower sys-
tems in short-term competitive markets.

 2. The estimation of the production function of a hydroelectric generating unit in a 
plant with a regulating reservoir based on the information available and consider-
ing that the efficiency of the turbine-generator set has a complex operational 
behavior due to the interdependency of several variables involved in the electricity 
generation process.

 3. A realistic case study to test our methodology.
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8.1  Introduction

Over	 the	 last	 20	 years	 the	 world’s	 largest	 developing	 countries	 have	 experienced	 a	
restructuring	process	in	their	power	sectors,	with	the	target	of	improving	fair	competi-
tion	and	decreasing	end-consumer	prices.	 In	this	new	environment,	 large	volumes	of	
electric	energy	are	being	traded	in	the	day-ahead	market.	Energy	producers	offer	energy	
and	reserves	on	this	market	on	the	basis	of	their	ability	to	produce	energy/contribute	to	
reserves	for	a	specific	period	on	the	following	day.	The	day-ahead	markets,	usually	also	
called	 spot	 markets	 owing	 to	 the	 very	 short-term	 forward	 delivery,	 are	 organized	 as	
sealed-bid	auctions,	with	voluntary	or	mandatory	participation.

In	a	day-ahead	energy	auction,	generating	units	submit	supply	offers	and	load	rep-
resentatives	 submit	 demand	 bids	 for	 all	 market	 products	 (energy	 and	 reserves)	 for	
each	 trading	 interval	 (hour	or	half-hour)	of	 the	next	day	 to	 the	 system	(or	market)	
operator.	Supply	offers	and	demand	bids	can	be	either	“priced,”	in	the	form	of	a	set	of	
price	quantity	(€/MWh–MWh)	pairs,	or	“nonpriced,”	in	the	form	of	quantity	(MWh),	
only	offers	or	bids.	The	system	operator	processes	supply	offers	and	demand	bids	and	
computes	the	market	clearing	price	(MCP)	for	all	products	as	well	as	the	trading	vol-
umes.	The	objective	of	the	optimization	is	the	maximization	of	the	social	welfare	(or	
equivalently	the	minimization	of	the	total	production	cost	minus	the	consumer	util-
ity)	along	with	the	satisfaction	of	the	system-	and/or	zonal-wide	energy	demand	and	
reserves	requirements,	unit	operating	constraints,	and	system	interzonal	constraints.

On	the	other	hand,	an	electricity	producer	faces	everyday	the	fundamental	problem	
of	self-scheduling	his	own	thermal	and	hydropower	generating	units	so	as	to	maximize	
his	total	profits	from	his	participation	in	the	day-ahead	energy	and	reserves	markets.	
The	solution	of	the	producer	self-scheduling	problem	provides	the	desired	commitment	
program	as	well	as	the	energy	and	reserve	contribution	of	each	producer’s	generating	
unit,	 for	all	periods	of	 the	next	day.	Once	 the	optimal	self-schedule	 is	computed,	 the	
electricity	producer	can	design	a	suitable	bidding	strategy,	such	as	those	presented	in	
References	[1,2],	that	will	indirectly	lead	the	ISO	to	issue	dispatch	schedules	close	to	the	
producer	optimal	self-schedules.

Many	different	optimization	methods	have	been	proposed	 in	 the	 literature	 for	 the	
solution	of	the	above	problems,	such	as	dynamic	programming	[3],	Lagrangian	relax-
ation	[4,5],	network	flow	programming	[6],	mixed	integer	programming	[7],	and	meta-
heuristic	techniques	[8,9].	An	extensive	review	of	the	literature	for	solving	hydrothermal	
coordination	and	self-scheduling	problems	can	be	found	in	Reference	[10].	Considering	
thermal	generating	units	only,	indicative	practical	mixed-integer	linear	programming	
(MILP)-based	approaches	that	are	suitable	for	both	traditional	(conventional	unit	com-
mitment)	and	competitive	(self-scheduling)	environments	are	given	in	References	[11–
16].	The	short-term	scheduling	of	hydro	units	 is	particularly	addressed	 in	References	
[17–22],	whereas	the	combination	of	thermal	and	hydro	subsystems	in	a	single	portfolio	
for	a	generation	company	is	presented	in	References	[23,24].

In	 an	 uncertain	 market	 environment,	 several	 models	 have	 been	 presented	 for	 the	
solution	 of	 the	 producer	 self-scheduling	 problem	 and	 the	 development	 of	 optimal	
	offering	 strategies	 in	day-ahead	electricity	markets	under	a	 stochastic	programming	
framework	[25–29].	In	these	models	the	producer	is	assumed	to	be	risk-neutral,	as	the	
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objective	 is	 the	maximization	of	 the	expected	profits,	without	 including	any	specific	
measure	accounting	for	risk.	The	risk	effect	under	different	measures	(variance,	down-
side	 risk,	 Conditional	 Value-at-Risk—CVaR,	 etc.)	 is	 modeled	 in	 References	 [30–35],	
whereas	a	detailed	overview	of	risk	assessment	methods	on	energy	trading	is	given	in	
Reference	[36].

In	this	chapter,	a	hydrothermal	electricity	producer	owning	thermal	and	hydropower	
generating	units	as	well	as	pumped	storage	plants	(henceforth,	“Producer”)	and	partici-
pating	in	the	day-ahead	energy	and	reserves	markets	is	considered.	The	Producer	self-
scheduling	problem	is	a	profit	maximization	problem,	which	is	formulated	and	solved	as	
an	MILP,	considering	the	co-optimization	of	the	Producer	participation	in	the	energy	as	
well	as	primary	(up/down),	secondary	(up/down),	and	tertiary	(spinning/nonspinning)	
reserves	markets	in	a	pool-based	framework.	The	mathematical	formulation	provided	is	
suitable	for	the	self-scheduling	of	a	hydrothermal	Producer	acting	either	as	a	price-taker	
or	as	a	price-maker	 in	 the	day-ahead	energy	and	reserves	markets.	Forward	bilateral	
contracts	 with	 end-consumers	 are	 considered	 and	 their	 effect	 on	 the	 Producer	 self-
schedule	 and	 profits	 is	 examined.	 Uncertainty	 of	 market	 conditions	 is	 also	 modeled	
within	a	two-stage	stochastic	programming	framework,	while	the	CVaR	metric	account-
ing	for	risk	management	is	also	incorporated.	Postprocessing	techniques	are	applied	for	
the	construction	of	the	generating	units	optimal	offer	curves	for	the	day-ahead	electric-
ity	market.

The	objective	and	the	mathematical	formulation	of	the	hydrothermal	Producer	self-
scheduling	problem	in	both	cases	(price-taker/price-maker)	are	further	described	in	the	
following	sections.	Initially,	the	deterministic	and,	subsequently,	the	stochastic	hydro-
thermal	Producer	self-scheduling	problems	are	described.	For	the	reader’s	convenience,	
the	 explanation	 of	 all	 symbols	 that	 appear	 in	 the	 following	 sections	 for	 the	 detailed	
mathematical	formulation	of	the	optimization	problem	and	are	not	defined	in	the	text	is	
given	in	Section	8.7.

The	hydrothermal	Producer	self-scheduling	problem	addressed	in	this	chapter	is	for-
mulated	as	a	constrained	optimization	problem	and	its	solution	can	be	found	through	
high-level	commercially	available	software	such	as	GAMS	[37],	which	allows	for	a	com-
pact	and	precise	representation	of	large-scale	and	complex	optimization	problems.	Such	
a	computational	environment	also	allows	for	the	use	of	state-of-the-art	solvers	such	as	
CPLEX,	which	is	a	high-performance	solver	suitable	for	linear	and	mixed-integer	linear	
programming.	GAMS/CPLEX	is	adopted	for	the	modeling	and	solution	of	the	present	
optimization	problem.

8.2   Objective of the Deterministic Hydrothermal 
Producer Self-Scheduling Problem

8.2.1  Price-Taker Producer Objective

First,	we	consider	a	price-taker	hydrothermal	Producer,	that	is,	a	producer	that	has	no	
capability	 of	 altering	 the	 MCPs	 of	 market	 products	 (energy	 and	 reserves).	 Although	
hourly	clearing	prices	depend	on	the	bidding	behavior	of	all	market	participants,	they	
are	assumed	to	be	known	and	used	as	input	parameters	in	the	Producer’s	optimization	
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problem.	 Appropriate	 forecasting	 methods	 such	 as	 artificial	 neural	 networks,	 time-
series	analysis,	and	so	on,	can	be	used	to	predict	the	hourly	clearing	prices	of	all	market	
products	for	the	next	day	[38–43].

In	 the	 case	 of	 a	 price-taker	 Producer,	 the	 self-scheduling	 problem	 is	 modeled	 as	 a	
mathematical	optimization	problem,	as	follows:
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where,	λt
pr 	 is	 the	 forecast	clearing	price	of	market	product	pr	(pr	=	E:	energy,	pr = m:	

reserves)	in	hour	t	(in	€/MWh),	pit	is	the	power	output	of	generating	unit	i	accepted	by	
the	ISO	in	hour	t	in	the	day-ahead	energy	auction	(in	MW),	rit

m 	is	the	contribution	of	
unit	i	in	reserve	type	m	during	hour	t	(in	MW),	and	cit	(pit)	is	the	total	production	cost	of	
thermal	unit	i	in	hour	t	at	level	pit	(in	€/h).

The	Producer	profit	during	the	planning	period,	represented	in	Equation	8.1,	is	the	
Producer	revenue	from	the	energy	market	and	the	various	reserves	markets	minus	the	
Producer	units’	total	operating	cost.	For	the	sake	of	simplicity,	the	cost	of	hydro	units	
and	the	cost	of	the	generating	units	for	providing	reserves	are	neglected.

As	the	MCPs	are	fixed,	the	market	revenue—the	product	of	the	clearing	price	times	
the	 Producer’s	 energy	 production/reserves	 contribution—is	 a	 linear	 function	 of	 the	
Producer’s	 energy	production/reserves	 contribution,	 respectively,	which	are	 the	main	
decision	variables	in	this	approach.

Constraints	8.2	represent	the	operating	constraints	of	the	Producer	units,	that	is,	start-
up	 and	 shutdown	 procedures,	 minimum	 up/down	 times,	 minimum/maximum	 power	
output	restrictions,	ramp-rate	limits,	fuel	limitations,	and	so	on.	These	constraints	can	be	
expressed	as	linear	constraints	on	the	continuous	and	the	binary	decision	variables	asso-
ciated	with	the	operation	of	the	unit,	denoted	by	the	vector	decision	variable	xit.

All	constraints	related	to	the	operation	of	the	Producer’s	thermal	and	hydro	generat-
ing	units	are	described	in	detail	in	Sections	8.3.2	and	8.3.4,	respectively.

8.2.2  Price-Maker Producer Objective

In	the	case	that	the	Producer	acts	as	a	price-maker	(Stackelberg	monopolist)	in	all	day-
ahead	markets	(energy	and	reserves),	his	daily	market	revenues	are	no	longer	calculated	
on	exogenous	 input	parameters	(e.g.,	MCPs)	but	 the	 influence	of	his	decisions	on	the	
resulting	MCPs	is	appropriately	taken	into	account.	The	Producer’s	strategic	behavior	is	
explicitly	modeled	through	the	use	of	residual	demand	curves	for	all	market	products,	
also	known	as	price-quota	curves.	The	residual	demand	curve	is	a	stepwise	monotoni-
cally	 nonincreasing	 function	 that	 expresses	 how	 the	 MCP	 of	 each	 market	 product	
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(energy	or	reserves)	changes	as	the	Producer’s	quota	(total	accepted	quantity	by	the	ISO)	
for	 this	 product	 changes.	 The	 residual	 demand	 curve	 is	 further	 described	 in	 Section	
8.2.2.1.

In	the	case	of	a	price-maker	Producer,	the	aim	of	the	Producer	is	to	compute	not	only	
his	quota	and	the	corresponding	energy	and	reserves	clearing	prices	(from	the	respec-
tive	hourly	residual	demand	curves)	but	also	the	commitment	scheduling,	that	is,	the	
desired	contribution	of	each	unit	 in	energy	and	reserves,	so	that	the	total	daily	profit	
from	his	participation	in	the	day-ahead	energy	and	reserves	markets	is	maximized,	as	in	
the	case	of	the	price-taker	Producer.

The	objective	function	of	the	price-maker	Producer	self-scheduling	problem	is	for-
mulated	as	follows:
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where	π ξ
t t

pr pr( )	is	the	residual	demand	curve	of	market	product	pr	(energy	and	reserves)	
in	hour	t,	expressed	as	a	stepwise	monotonically	nonincreasing	function	that	represents	
the	MCP	as	a	function	of	the	Producer	quota,	ξ

t

pr .
Owing	 to	 the	 products	 of	 variables	 in	 Equation	 8.3,	 the	 optimization	 problem	 is	

	nonlinear.	An	alternative	linear	formulation	requires	additional	continuous	and	binary	
decision	variables	as	well	as	the	incorporation	of	additional	constraints	8.5	through	8.9	
presented	in	Section	8.2.2.1	in	the	model,	so	that	the	nonlinear	objective	function	8.3	is	
transformed	to	the	equivalent	linear	expression	given	by
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Similarly	 with	 the	 previous	 case,	 the	 hydrothermal	 Producer’s	 profit	 during	 the	
scheduling	 period	 represented	 in	 Equation	 8.3,	 Equation	 8.4	 is	 computed	 as	 the	
	difference	between	its	revenue	from	the	day-ahead	energy	and	reserves	markets	minus	
the	Producer	units’	total	operating	cost.	Constraints	8.2,	denoting	the	Producer	units’	
feasible	operating	region,	must	also	be	included	in	the	optimization	problem,	as	already	
mentioned	in	Section	8.2.1.

8.2.2.1  Residual Demand Curve

In	a	given	hour,	a	Producer	acting	as	a	price-maker	in	all	market	products	(energy	and	
reserves)	contributes	a	specific	amount	of	energy	and	reserves	in	order	to	serve	the	load	
demand	and	the	corresponding	system	reserve	requirements,	 though	he	 is	capable	of	
altering	the	respective	MCPs	to	his	own	benefit.	The	amount	of	energy	or	reserves	that	
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the	Producer	desires	to	be	accepted	by	the	market	operator	in	the	day-ahead	auction	is	
called	quota.	The	curve	that	expresses	how	the	MCP	of	a	market	product	changes	as	the	
Producer	quota	of	this	product	changes	is	called	price-quota	curve	or	residual	demand	
curve	 [16].	Each	residual	demand	curve	 is	 formed	as	 the	difference	of	 the	aggregated	
demand	curve	for	each	market	product	and	the	aggregated	competitors’	offer	curve	for	
the	same	product.	A	typical	residual	demand	curve	for	energy	is	shown	in	Figure	8.1.

The	 residual	 demand	 curve	 is	 formed	 as	 a	 stepwise	 monotonically	 nonincreasing	
function	of	the	Producer’s	quota.	The	hourly	residual	demand	curves	that	the	Producer	
faces	can	be	estimated	based	on	forecasts	of	the	system	load	demand/reserve	require-
ments	and	the	competitors’	energy/reserve	offers	for	every	hour	of	the	scheduling	hori-
zon	 [2].	 The	 mathematical	 formulation	 of	 the	 price-taker	 Producer	 self-scheduling	
problem	is	a	special	case	of	the	price-maker	Producer	problem.	In	this	special	case,	the	
residual	demand	curve	of	any	hour	of	the	scheduling	horizon	consists	of	one	step	only,	
with	offer	quantity	equal	to	the	total	load	demand/reserve	requirement	and	offer	price	
equal	to	the	forecast	product	MCP.

Figure	8.2	shows	the	variables	and	parameters	needed	for	the	linearization	of	the	price-
maker	 Producer	 revenue	 as	 a	 function	 of	 its	 quota	 of	 a	 given	 market	 product	 (energy/
reserves).	The	stepwise	nature	of	the	hourly	residual	demand	curve	allows	for	the	linear	
formulation	of	the	Producer	revenue	using	the	continuous	variables	dbt	and	the	binary	vari-
ables	wbt.	The	gray	shaded	area	denotes	the	Producer	revenue	for	a	given	market	product.	
Constraints	8.5	through	8.9	that	follow	must	be	incorporated	to	the	self-scheduling	prob-
lem	formulation,	as	they	are	necessary	for	the	linearization	of	the	problem	objective	8.4.
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Equation	8.5	defines	the	Producer	energy	quota,	ξ
t
E ,	in	hour	t,	which	is	equal	to	the	

summation	of	the	power	output	of	thermal	units	and	hydroplants	minus	the	pumping	
load	of	pumped	storage	plants,	and	it	is	required	in	order	to	compute	the	energy	MCP	
from	 the	 residual	 demand	 curve	 [16],	 π ξ

t t
E E( ),	 used	 in	 Equation	 8.3	 to	 compute	 the	

Producer	revenue.
Similarly,	Equation	8.6	defines	the	Producer	quota	of	reserve	type	m,	ξ

t
m,	in	hour	t,	

which	is	equal	to	the	summation	of	the	contribution	of	thermal	units	and	hydroplants	in	
reserve	type	m,	and	it	is	required	so	as	to	compute	the	reserve	type	m	MCP	from	the	
residual	demand	curve,	 π ξ

t t
m m( ),	used	in	Equation	8.3	to	compute	the	Producer	revenue.	

Given	that	tertiary	reserve	can	be	provided	by	units	either	as	spinning	(3S)	or	nonspin-
ning	(3NS)	reserve,	the	following	equation	must	be	added	to	the	model:

	 r r r i tit it it
3 3 3= + ∀ ∈ ∈S NS I T, 	 (8.10)

Constraints	8.7	express	the	linear	formulation	of	the	Producer	quota	of	each	market	
product	pr	(energy	and	reserves)	in	every	hour	t	as	a	function	of	variables	d

bt

pr 	and	w
bt

pr.	
Constraints	8.8	denote	that	the	blocks	of	the	price	quota	curve	of	product	pr	accepted	by	
the	 ISO	 in	 every	 hour	 are	 upper-bounded	 positive	 values.	 Constraints	 8.8	 and	 8.9	
together	state	that	only	one	variable	d

bt

pr 	is	different	from	zero	in	every	hour.
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FIGURE 8.2 Linear	formulation	of	the	residual	demand	curve.
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8.3   Formulation of the Deterministic Hydrothermal 
Producer Self-Scheduling Problem as an MILP

In	 this	 section,	 the	 deterministic	 hydrothermal	 Producer	 self-scheduling	 problem	 is	
formulated	as	an	MILP.	A	detailed	modeling	of	the	operating	constraints	of	all	generat-
ing	units	is	presented	separately	for	the	thermal	and	hydro	subsystems	in	Sections	8.3.1	
through	8.3.4,	respectively.	In	Section	8.3.6,	an	extension	of	the	hydrothermal	Producer	
self-scheduling	problem	formulation	is	provided,	in	which	the	hydrothermal	Producer	
is	considered	to	play	a	dominant	role	in	the	retail	sector	through	forward	bilateral	con-
tracts	with	end-consumers.	The	modeling	of	the	uncertainties	of	the	day-ahead	market	
conditions	is	deferred	to	Section	8.4,	where	a	two-stage	stochastic	programming	model	
is	formulated	for	the	efficient	self-scheduling	of	the	Producer	and	the	development	of	
optimal	offer	curves	for	the	day-ahead	energy	market.

8.3.1  Thermal Unit Operating Phases

Figure	8.3	shows	the	different	operating	phases	of	a	thermal	unit.	After	being	reserved	
(uit	=	0)	 for	Ti

off 	 hours	 (T DTi i
off ≥ ),	 the	 unit	 starts	 up	 at	 hour	 t1	 (yit	=	1)	 and	 remains	

committed	(uit	=	1)	until	 it	 is	shut	down	at	hour	t5	(zit	=	1).	Once	committed,	the	unit	
follows	four	consecutive	operation	phases:	(i)	synchronization,	(ii)	soak,	(iii)	dispatch-
able,	and	(iv)	desynchronization,	denoted	by	binary	variables	u u uit it it

syn soak disp, , ,	and	uit
des ,	

respectively	(Figure	8.3).	The	first	two	phases	comprise	the	unit	start-up	phase.	During	
the	dispatchable	phase,	the	unit	can	receive	dispatch	instructions	to	vary	its	power	out-
put	 between	 its	 technical	 minimum	 and	 its	 nominal	 power	 output	 according	 to	 its	
ramp-rate	limits,	and	contributes	to	the	system	reserves.	During	the	desynchronization	
phase,	the	unit	power	output	follows	a	predefined	shutdown	sequence.

Off

Synchro Soak
ui

syn = 1 ui
soak = 1

Dispatch

ui
disp = 1

Desync

ui
des = 1

zi = 1
yi = 1zi = 1

pit
(MW)

Pi
max

Pi
min

PiTsoak

Pi(Tsoak-1)

Pi
syn = Pi1

soak

t t1 t2 t3 t4 t5 t(h)

Pi2

ui = 0
On

ui = 1

…… …… ……………

soak

soak

soak

Ti
off Ti

soakTi
syn Ti

disp Ti
des

…

FIGURE 8.3 Operating	phases	of	a	thermal	unit.
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The	accurate	modeling	of	the	unit	start-up	sequence	requires	special	attention.	Three	
start-up	types	are	modeled,	ℓ	∈	L	=	{h,	w,	c}	(h:	hot,	w:	warm,	and	c:	cold),	each	with	
distinct	synchronization	time,	soak	time,	and	start-up	cost,	as	shown	in	Table	8.1.	Both	
Ti

syn, 	and	Ti
soak,	depend	on	the	thermal	unit’s	prior	reservation	time	Ti

off .	In	this	Table,	
T-	represents	a	large	number	of	hours	in	the	past	(larger	than	the	maximum	reservation	
time	to	cold	start	all	units)	and	is	further	explained	in	Appendix	A8.1.

The	thermal	unit	start-up	sequence	consists	of	two	phases:	(i)	synchronization	phase	
and	(ii)	soak	phase.

Once	 a	 type	ℓ	 start-up	 decision	 is	 taken,	 y
it
 = 1	 (see	 Figure	 8.3),	 the	 thermal	 unit	

enters	the	synchronization	phase	that	lasts	for	Ti
syn, 	hours	and	during	which	the	power	

output	of	the	unit	is	0	MW.	Subsequently,	the	unit	enters	the	soak	phase	that	lasts	for	
Ti

soak,	hours	and	during	which	the	unit	operates	between	the	synchronization	load,	Pi
syn,	

and	the	technical	minimum	power	output,	Pi
min .	A	detailed	description	of	the	unit’s	soak	

phase	ramp-up	sequence	is	given	in	Section	8.3.2.3.
Once	a	thermal	unit	enters	a	hot,	warm,	or	cold	start-up	phase,	it	should	complete	the	

start-up	sequence,	and	enter	the	dispatchable	phase	for	at	least	1	h,	or	as	long	as	needed	
to	satisfy	the	minimum	up	time	requirement	before	shutting	down.

8.3.2  Thermal Unit Constraints

8.3.2.1  Start-Up-Type Constraints

	

y z i tit i
t T

t T

i

i






≤ ∀ ∈ ∈ ∈ ∈
= − +

−

−∑ τ

τ

τ
1

I T L T, , , where 
	

(8.11)

	
y y i tit it= ∀ ∈ ∈

∈
∑ 

 L

I T,
	

(8.12)

Constraints	 8.11	 select	 the	 correct	 start-up	 type	 of	 the	 ith	 unit,	 depending	 on	 the	
unit’s	prior	reservation	time	as	described	by	the	first	two	columns	of	Table	8.1.	This	is	
achieved	in	Equation	8.11	by	constraining	the	type	ℓ	start-up	variable	of	unit	i	during	
hour	t,	 yit

 ,	to	be	zero,	unless	there	was	a	prior	shutdown	of	the	unit	in	the	time	interval	

TABLE 8.1 Thermal	Unit	Start-up	Modeling

Start-up	Type

Prior	Reservation	Time	(h)	
T T Ti i i
 ≤ <off Synchronization	

Time	(h) Soak	Time	(h) Start-up	Cost	(€)

Hot 0 ≤ <T Ti i
woff Ti

hsyn, Ti
hsoak, SUCi

h

Warm T T Ti
w

i i
c≤ <off Ti

wsyn, Ti
wsoak, SUCi

w

Cold T T Ti
c

i≤ < −off Ti
csyn, Ti

csoak, SUCi
c
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( , ]t T t Ti i− −  .	 Constraints	 8.12	 ensure	 that	 only	 one	 start-up	 type	 per	 start-up	 is	
selected.	Planning	horizon	extended	to	the	past,	T−,	is	further	explained	in	Appendix A8.1.

8.3.2.2  Synchronization Phase Constraints

	

u y i tit i

t T

t

i

syn

syn

where ,

,







= ∀ ∈ ∈ ∈ ∈
= − +

−∑ τ

τ

τ
1

I T L T, , ,
	

(8.13)

	
u u i tit it

syn syn= ∀ ∈ ∈
∈
∑ ,

 L

I T,
	

(8.14)

Constraints	8.13	ensure	that	unit	i	enters	the	synchronization	phase	immediately	fol-
lowing	 start-up	 (see	 Figure	 8.3).	 The	 duration	 of	 the	 synchronization	 phase,	 Ti

syn, ,	
depends	on	the	start-up	type,	ℓ.	This	is	achieved	in	Equation	8.13	by	turning	on	the	type	
ℓ	synchronization	phase	binary	variable,	uit

syn,,	whenever	there	is	a	type	ℓ	start-up	of	the	
unit	in	the	prior	Ti

syn, 	hours.	Constraints	8.14	ensure	that	only	one	synchronization	type	
per	start-up	is	selected.

8.3.2.3  Soak Phase Constraints

	

u y i tit i

t T T

t T

i i

i
soak

syn soak

syn

,
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u u i tit it

soak soak= ∀ ∈ ∈
∈
∑ ,

 L

I T,
	

(8.16)

Constraints	8.15	ensure	that	thermal	unit	 i	 should	enter	a	soak	phase	following	its	
synchronization	(see	Figure	8.3).	The	duration	of	the	soak	phase	depends	on	the	unit	i	
start-up	type	(hot,	warm,	cold).	Constraints	8.16	ensure	that	only	one	soak	phase	type	
per	start-up	is	selected.

In	general,	during	the	soak	phase,	the	power	output	of	a	thermal	unit	follows	a	pre-
defined	sequence	of	megawatt	values,	depending	on	the	start-up	type,	ℓ,	as	shown	in	
Figure	8.4:

	
P s Tis i

soak soak, ,, , ..., ={ }1
	

(8.17)

Thus,	during	the	soak	phase,	the	power	output	of	the	unit	is	constrained	by

p y Pit i

t T T

t T

i t T

i i

i

i

soak

syn soak

syn

sy= ⋅
= − − +

−

∈
−∑∑ τ

τ











, ,

,

,
1L

nn
soak where

− +
−∀ ∈ ∈ ∈ ∈

τ
τ

1
,

i tI T L T, , ,
	

(8.18)

Two	special	cases	are	considered.
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In	the	first	case,	during	the	soak	phase,	the	thermal	unit	power	output	increases	lin-
early	from	its	synchronization	load,	Pi

syn,	to	the	unit	technical	minimum,	Pi
min 	(Figure 8.3).	

In	this	case,	the	soak	phase	megawatt	sequence	of	Equation	8.17	is	defined	by

	
P P s P P

T s Tis i
i i

i
i

soak syn
syn

soak
soak,

min

,
,( ) , , ...,



= + − ⋅
−

=1 1
	

(8.19)

In	the	second	case,	the	thermal	unit	power	output	during	the	soak	phase	is	fixed	to	the	
constant	value	Pi

soak	(in	MW).	In	this	case,	Pi
soak	can	be	factored	out	of	the	second	sum	of	

Equation	8.18,	and	using	Equation	8.15,	Equation	8.18	is	simplified	to

	
p P u i tit i it

soak soak soak= ⋅ ∀ ∈ ∈
∈
∑




L

I T, ,
	

(8.20)

8.3.2.4  Desynchronization Phase Constraints

	
u z i tit i
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t Ti
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(8.22)

where	 τ	∈	T  +.	 Planning	 horizon	 extended	 to	 the	 future,	 T  +,	 is	 further	 explained	 in	
Appendix	A8.1.

…

…… …… ……

Pi
max

Pi
min

PiTsoak

Pi(Tsoak-1)

Pi2

Pi1

soak

soak

soak

soak

pit
(MW)

t1 t2 t3 t(h)

yi = 1

Ti
off Ti

soakTi
syn Ti

disp

FIGURE 8.4 Soak	phase	of	a	thermal	unit	with	predefined	sequence	of	megawatt	values.
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Constraints	8.21	ensure	 that	 thermal	unit	 i	 should	operate	 in	a	desynchronization	
phase	lasting	Ti

des 	hours	before	its	shutdown	(see	Figure	8.3).	The	thermal	unit	power	
output	during	the	desynchronization	process	decreases	linearly	from	its	technical	mini-
mum	power	output	to	0	MW	(see	Equation	8.22).

8.3.2.5  Minimum Up/Down Time Constraints

	
y u i ti it

t UT

t

i

τ

τ

τ≤ ∀ ∈ ∈ ∈ ∈
= − +

−∑
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(8.24)

Constraints	8.23	and	8.24	enforce	the	minimum	up/down	time	constraints,	respec-
tively;	that	is,	unit	i	must	remain	committed	(decommitted)	at	hour	t	if	its	start-up	(shut-
down)	occurred	during	the	previous	UTi	−	1	(DTi	−	1)	hours	[44].

8.3.2.6  Logical Status of Commitment

	 u u u u u i tit it it it it= + + + ∀ ∈ ∈syn soak disp des I T, 	 (8.25)

	 y z u u i tit it it i t− = − ∀ ∈ ∈−( )1 I T, 	
(8.26)

	 y z i tit it+ ≤ ∀ ∈ ∈1 I T, 	 (8.27)

Constraints	8.25	ensure	that	only	one	at	most	of	the	binary	variables	corresponding	
to	the	different	commitment	states	of	unit	i	can	equal	1	in	every	hour.	Constraints	8.26	
model	the	logic	of	the	start-up	and	shutdown	statuses	change.	Constraints	8.27	require	
that	unit	i	may	not	be	started	up	and	shut	down	simultaneously	in	a	given	hour.

8.3.2.7  Power Output Constraints

	 u u i tit it
AGC disp≤ ∀ ∈ ∈I T, 	 (8.28)

	 0 1 1≤ ≤ ⋅ ∀ ∈ ∈+r R u i tit i it
disp I T, 	 (8.29)

	 0 1 1≤ ≤ ⋅ ∀ ∈ ∈−r R u i tit i it
disp I T, 	 (8.30)

	 0 152≤ ≤ ⋅ ⋅ ∈ ∈+r RU u i tit i
AGC

it
AGC ∀ I T, 	 (8.31)
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	 0 152≤ ≤ ⋅ ⋅ ∀ ∈ ∈−r RD u i tit i
AGC

it
AGC I T, 	 (8.32)

	 0 3 3≤ ≤ ⋅ ∀ ∈ ∈r R u i tit
S

i
S

it
disp I T, 	 (8.33)

	 r R u i tit
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	 r P u i tit
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	 u u i tit
NS
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3 1≤ − ∀ ∈ ∈I T, 	 (8.36)
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+2 0 syn soak des dispmax
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	 p r r u p p P u iit it it it it it i it− − ≥ ⋅ + + + ⋅ ∀ ∈− −1 2 0 syn soak des dispmin I, tt ∈T 	 (8.39)

	 	

p r r r u p p P uit it it it
S

it it it i it+ + + ≤ ⋅ + + + ⋅+1 2 3 0 syn soak des dispmax

++ −( ) ⋅ ∀ ∈ ∈
+( )P P z i ti i i t Ti

min max
des I T,

	
(8.40)

where	t i T+ ∈T des + .
Constraints	8.28	state	that	unit	i	may	provide	automatic	generation	control	(AGC)	if	

and	only	if	it	is	on	dispatch.	Constraints	8.29	through	8.34	set	the	upper	limits	of	pri-
mary	 up/down,	 secondary	 up/down,	 and	 tertiary	 spinning/nonspinning	 reserves,	
respectively.	As	shown	by	constraints	8.28	through	8.33,	unit	i	may	contribute	in	syn-
chronized	reserves	if	and	only	if	it	is	dispatchable,	whereas	during	the	synchronization,	
soak,	 and	 desynchronization	 phases	 the	 contribution	 of	 the	 synchronized	 reserves	 is	
equal	to	zero.	Constraints	8.35	enforce	the	tertiary	nonspinning	reserve	contribution	to	
be	greater	than	the	minimum	power	output	of	unit	i.	Constraints	8.36	state	that	unit	i	
may	provide	tertiary	nonspinning	reserve	if	and	only	if	it	is	offline.

Constraints	8.37	through	8.40	define	the	limits	of	the	power	output	of	thermal	unit	i	
in	every	commitment	state.	The	first	 three	terms	on	the	right-hand	side	of	Equations	
8.37	through	8.40	constrain	the	output	of	the	unit	during	synchronization,	soak,	and	
desynchronization.	 If	unit	 i	 is	on	synchronization	 in	hour	 t	 (i.e.,	uit

syn = 1),	 the	power	
output	will	be	equal	to	0,	whereas	the	terms	 pit

soak	and	 pit
des 	are	defined	in	Equations	8.18	

or	 8.20	 and	 8.22,	 respectively.	 The	 last	 term	 of	 the	 right-hand	 side	 of	 Equation	 8.40	
ensures	that	the	unit	will	operate	at	its	technical	minimum	power	output	the	hour	before	
entering	the	desynchronization	phase;	this	term	must	be	omitted	for	fast-start	units.
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8.3.2.8  Ramp-Up/Down Constraints

	
p p RU u u i tit i t i it it− ≤ ⋅ + ⋅ +( ) ∀ ∈ ∈−( )1 60 N I Tsyn soak ,

	
(8.41)

	
p p RD N z u i ti t it i it it−( ) − ≤ ⋅ + ⋅ +( ) ∀ ∈ ∈1 60 des I T,

	
(8.42)

Constraints	8.41	and	8.42	introduce	the	effect	of	ramp-rate	limits	on	the	power	out-
put.	Note	that	N	is	a	large	constant,	so	that	constraints	8.41	and	8.42	are	relaxed	when	
unit	i	is	in	the	synchronization,	soak,	or	desynchronization	phase.

8.3.2.9  Fuel Limitations

	
p F iit

t
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∈
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I
	

(8.43)

Constraints	8.43	establish	an	upper	bound	on	the	sum	of	the	energy	production	of	a	
thermal	 generating	 unit	 i	 during	 the	 scheduling	 horizon	 due	 to	 fuel	 limitations,	 for	
example,	shortage	of	lignite/natural	gas/oil	reserves.

8.3.3  Total Thermal Unit Production Cost

The	total	production	cost	of	a	thermal	unit	includes	the	unit’s	start-up-type-dependent	
start-up	cost,	SUCi

	(see	Figure	8.5),	shutdown	cost,	SDCi,	and	the	hourly	operating	cost	

Ti
w Ti

c ∞ Shut-down time
(h)

ColdWarmHot

Start-up
cost
(€)

SUCi
c

SUCi
w

SUCi
h

……0

FIGURE 8.5 Start-up	cost	from	hot,	warm,	or	cold	standby	until	load	with	synchronization.
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defined	by	the	unit’s	no-load	cost,	NLCi,	and	the	stepwise	marginal	cost	function,	(Eif ,	
Cif),	f	∈	F i	,	shown	in	Figure	8.6.

The	general	case	of	a	stepwise	marginal	cost	function	of	the	units	is	modeled	with	the	
addition	of	new	variables	mcift	and	eift,	defined	as	follows	[1,11]:

F i	:	Set	of	steps	of	the	stepwise	marginal	cost	function	of	unit	j,	Fi	=	{1,2,. . .,Fi}.
eift	:	Portion	of	step	f	of	the	ith	unit’s	marginal	cost	function	loaded	in	hour	t	(in	

MWh).
mcift	:	Binary	variable	indicating	unit	i	output	higher	than	or	equal	to	step	f	during	

hour	t	(needed	for	nonconvex	cost	function	only).

The	total	production	cost	of	a	thermal	unit	is	modeled	as	follows:

	

c p SUC y SDC z NLC u u

C e

it it i it i it i it it

if if

( ) = ⋅ + ⋅ + ⋅ −( )
+ ⋅

∈
∑  
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syn

tt
f

i t
∈

∑ ∀ ∈ ∈
Fi

I T, 	 (8.44)

In	the	general	case	of	nonconvex	cost	functions,	 the	following	constraints	must	be	
added	to	the	model:

	

e p i tift
f

it
i∈

∑ = ∀ ∈ ∈
F

I T,

	
(8.45)

	 mc E e mc E i f ti f t if ift ift if
i

( ) , ,+ ⋅ ≤ ≤ ⋅ ∀ ∈ ∈ ∈1 I F T 	 (8.46)

	 mc mc i f ti f t ift
i

( )+ ≤ ∀ ∈ ∈ ∈1 I F T, , 	 (8.47)

Quantity (MW)

Marginal
cost

(€/MWh)

Ci2

Ci1

Ci3

Ei1 Ei2 Ei3

ei1 ei2 ei3

FIGURE 8.6 Thermal	generating	unit	stepwise	marginal	cost	function	(convex	cost	function).
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If	 the	 unit’s	 marginal	 cost	 function	 is	 nondecreasing	 (convex	 cost	 function;	 see	
Figure 8.6),	 the	use	of	 the	additional	binary	variables	mcift	 is	avoided	and	constraints	
8.46	and	8.47	should	be	replaced	by	constraint	8.48	in	the	model.

	 0 ≤ ≤ ∀ ∈ ∈ ∈e E i f tift if
iI F T, , 	 (8.48)

The	 start-up	 cost	 used	 in	 Equation	 8.44	 is	 discretized	 in	 three	 levels,	 one	 for	 each	
start-up	 type	 (see	 Figure	 8.5).	 However,	 a	 more	 detailed	 start-up	 cost	 model,	 which	
allows	 hourly	 resolution	 of	 the	 prior	 reservation	 time,	 such	 as	 the	 one	 presented	 in	
References	[45,46],	may	also	be	used.

It	should	be	noted	that	the	start-up	cost,	SUCi,	includes	expenses	up	to	the	end	of	the	
synchronization	phase;	the	unit	operating	cost	during	the	soak	phase	is	computed	sepa-
rately,	as	the	sum	of	the	unit’s	no-load	cost	and	the	integral	of	the	unit’s	marginal	cost	
function,	as	 shown	 in	Equation	8.44.	Similarly,	 the	 shutdown	cost,	SDCi,	 involves	all	
expenses	 needed	 for	 the	 unit’s	 shutdown	 besides	 the	 unit	 operating	 cost	 during	 the	
desynchronization	phase.

Example	8.1	describes	the	optimal	self-scheduling	(commitment	and	dispatch	sched-
ule)	 of	 a	 thermal	 Producer	 owning	 a	 single	 combined-cycle	 gas	 turbine	 (CCGT)	 and	
acting	as	a	price-taker	in	all	day-ahead	markets	(energy	and	reserves).

Example 8.1: Optimal Self-Scheduling of a Thermal Producer

We	consider	a	thermal	Producer	with	one	typical	CCGT	who	participates	as	a	
price-taker	 in	all	day-ahead	markets	(energy	and	reserves)	responding	to	the	
respective	forecast	clearing	price	curves	for	all	market	products.

Table	 8.2	 presents	 the	 main	 technoeconomic	 data	 of	 the	 CCGT,	 whereas	
Table  8.3	 shows	 the	 forecast	 MCPs	 for	 energy.	 Prices	 for	 primary	 up/down,	
	secondary	up/down,	and	tertiary	spinning	reserves	are	considered	to	be	con-
stant	during	the	whole	scheduling	period	and	equal	 to	20,	16,	and	8€/MWh,	
respectively.	 The	 price	 for	 tertiary	 nonspinning	 reserve	 is	 considered	 to	 be	
equal	 to	5€/MWh	during	peak-load	hours	 (i.e.,	hours	10–16	and	21–23),	 and	
zero	during	off-peak	hours.	Note	 that	 in	 the	 time	 interval	before	 the	market	
horizon	(t	=	0),	the	CCGT	was	operating	at	its	nominal	power	output	and	had	
been	synchronized	for	20	h.

The	 size	 of	 the	 CCGT	 is	 small	 compared	 to	 the	 system	 requirements	
and, thus, coupling	constraints	8.84	through	8.89	are	relaxed	in	this	example.	
In	 addition,	 fuel	 limitations	 as	 in	 Equation	 8.43	 are	 inactive	 and	 a	 convex	

TABLE 8.2 Combined	Cycle	Unit	Data

Start-up	Time Marginal	
Cost Range	
(€/MWh)Hot Warm Cold

Pmax	
(MW)

Pmin	
(MW)

UT	
(h)

DT	
(h)

T w	
(h)

T c	
(h)

T syn,h 

(h)
T soak,h 

(h)
T syn,w 

(h)
T soak,w 

(h)
T syn,c 

(h)
T soak,c 

(h)
Tdes	
(h)

Min. Max.

476 250 4 3 5 12 0 1 1 1 3 3 2 55.0 59.0
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cost function	is	considered.	Therefore,	the	optimization	problem	in	this	exam-
ple	 consists	 of	 the	 problem	 objective	 8.1	 subject	 to	 constraints	 8.11	 through	
8.42,	8.44	and	8.45,	and 8.48.

Figure	8.7	illustrates	the	optimal	self-schedule	of	the	CCGT.	Owing	to	the	
low-energy	 MCP	 of	 the	 early	 morning	 hours,	 the	 CCGT	 is	 desynchronized	
from	3:00	to	6:00	p.m.,	 following	a	2-h	desynchronization	phase	(hours	1–2).	
Although	the	MCP	is	lower	than	the	combined	cycle	unit’s	variable	cost	during	
hours	1–2,	the	CCGT	cannot	be	shut	down	immediately,	as	it	must	first	follow	
a	2-h	desynchronization	phase.	In	addition,	although	the	MCP	in	hours	7–8	is	
lower	than	the	combined	cycle	unit’s	variable	cost,	it	is	more	profitable	for	the	
CCGT	to	perform	a	hot	start-up	in	hour	7	than	to	perform	a	warm	start-up	in	
hour	9	(see	Tables	8.1	and	8.3),	due	to	the	higher	start-up	cost	in	the	latter	case	
(see	Figure	8.5).	In	hours	8–24,	the	combined	cycle	unit	is	in	the	dispatchable	
phase	and	is	capable	of	contributing	to	different	types	of	reserves.

In	 hours	 8–10,	 16–19,	 and	 24,	 the	 CCGT’s	 opportunity	 cost	 for	 providing	
reserves	(defined	as	the	difference	between	the	forecast	energy	MCP	and	the	unit’s	
marginal	cost)	is	lower	than	the	respective	reserves	prices	and	so	the	Producer	
decides	to	operate	 its	CCGT	strictly	within	 its	power	output	 limits	 in	order	to	
contribute	 to	 different	 types	 of	 reserves.	 On	 the	 contrary,	 during	 hours	 11–15	

TABLE 8.3 Forecast	Market	Clearing	Prices	(Energy)

Hour Price	(€/MWh)

1 52.34
2 32.21
3 31.52
4 27.85
5 27.85
6 30.64
7 48.19
8 55.78
9 64.11
10 76.45
11 85.32
12 88.12
13 95.16
14 106.75
15 108.89
16 65.18
17 59.17
18 52.23
19 52.23
20 87.54
21 112.45
22 117.89
23 89.32
24 66.00
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and	20–23,	the	combined	cycle	units,	opportunity	cost	for	providing	reserves	is	
much	higher	than	all	reserves	prices,	making	it	more	profitable	for	the	Producer	
to	operate	 its	CCGT	at	 its	nominal	power	output,	without	contributing	to	any	
type	of	upward	reserves.	The	total	daily	profit	of	the	CCGT	is	equal	to	€135,008.

8.3.4  Hydro Unit Constraints

This	 section	 presents	 the	 constraints	 imposed	 on	 the	 operation	 of	 hydroplants	 and	
pumped	storage	plants	over	the	scheduling	horizon.

Given	that	hydro	units	are	fast-start	units,	they	can	be	committed/decommitted	in	a	
few	minutes	and,	thus,	they	do	not	follow	the	start-up	and	shutdown	procedures,	includ-
ing	synchronization,	soak,	and	desynchronization	phases,	presented	in	Section	8.3.2.	As	
a	 result,	 all	 commitment	 (binary)	 variables	 corresponding	 to	 these	 phases	 (i.e.,	
u u u

jt jt jt

syn soak des= = = 0 )	as	well	as	all	related	constraints	8.11	through	8.22	standing	for	
thermal	units	are	omitted	for	hydroplants.	Additionally,	the	total	operating	cost	(includ-
ing	start-up	and	shutdown	costs)	of	a	hydroplant	is	considered	to	be	equal	to	zero.

8.3.4.1  Hydro Intertemporal Constraints

Constraints	8.23	through	8.27	and	8.41	and	8.42	enforcing	the	expressions	of	minimum	
up/down	time,	logical	status	of	commitment,	and	ramp-rate	limits	for	thermal	units	are	
also	valid	for	hydroplants,	by	substituting	index	“i”	with	index	“ j”	(“ j”	denotes	hydro-
plants)	and	taking	into	account	that	u u u

jt jt jt

syn soak des= = = 0 .

8.3.4.2  Hydro Power Output Constraints

	 u u j tjt
AGC

jt≤ ∀ ∈ ∈disp J T, 	 (8.49)

	 0 152≤ ≤ ⋅ ⋅ ∀ ∈ ∈+r RU u j tjt j
AGC

jt
AGC J T, 	 (8.50)
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FIGURE 8.7 Energy	and	reserves	contribution	of	a	typical	CCGT	unit	(476	MW)	in	the	day-
ahead	energy	and	reserves	markets.
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	 0 152≤ ≤ ⋅ ⋅ ∀ ∈ ∈−r RD u j tjt j
AGC

jt
AGC J T, 	 (8.51)

	 0 3 3≤ ≤ ⋅ + ∀ ∈ ∈r R u p j tjt
S

j
S

jt jt
Adisp J T, 	 (8.52)

	 r P u j tjt j jt
3 3NS NS≤ ⋅ ∀ ∈ ∈max J T, 	 (8.53)

	 r P u j tjt j jt
3 3NS NS≥ ⋅ ∀ ∈ ∈min J T, 	 (8.54)

	 u u j tjt jt
3 1NS ≤ − ∀ ∈ ∈J T, 	 (8.55)

	
p r P u u P u j tjt jt j jt jt

AGC
j

AGC
jt
AGC− ≥ ⋅ −( ) + ⋅ ∀ ∈ ∈−2 min min,disp J T,

	
(8.56)

	
p r P u u P u j tjt jt j jt jt

AGC
j

AGC
jt
AGC+ ≤ ⋅ −( ) + ⋅ ∀ ∈ ∈+2 max max,disp J T,

	
(8.57)

	 p r r P u j tjt jt jt j jt+ + ≤ ⋅ ∀ ∈ ∈+2 3S dispmax J T, 	 (8.58)

	
y M jjt

t∈
∑ ≤ ∀ ∈

T

J
	

(8.59)

Constraints	8.49	through	8.55	enforce	the	reserves	contribution	limits	of	hydroplants	
and	are	similar	to	constraints	8.28	through	8.36	standing	for	thermal	units,	with	the	
exception	of	constraints	8.29	and	8.30	 that	are	omitted	 in	 the	case	of	hydro	units,	as	
these	units	do	not	contribute	to	primary	up/down	reserves	due	to	a	transient	phenome-
non	that	takes	place	when	the	water	flow	through	a	penstock	changes	suddenly,	known	
as	the	“water	hammer	effect”	[47].	As	shown	in	Equation	8.52,	the	pumping	load	of	a	
pumped	storage	plant	can	also	contribute	to	tertiary	spinning	reserve.

Constraints	8.56	through	8.58	enforce	the	power	output	plus/minus	the	correspond-
ing	reserves	contribution	of	a	hydroplant	j	to	be	within	the	respective	nominal	limits.	
Given	that	hydro	units	are	not	involved	in	synchronization,	soak,	and	desynchroniza-
tion	phases,	constraints	8.56	through	8.58	are	much	simpler	than	the	respective	power	
output	constraints	8.37	through	8.40	standing	for	thermal	units.

Finally,	constraints	8.59	enforce	the	maximum	number	of	hydroplant	start-ups	dur-
ing	the	daily	scheduling	horizon.	In	this	chapter,	M	is	equal	to	2	to	coincide	with	the	
number	of	peaks	within	the	scheduling	period.

8.3.4.3  Hydro Prohibited Operating Zones

	
u P p u P j tjt

z

z
j

z
jt jt

z

z
j

z⋅ ≤ ≤ ⋅ ∀ ∈ ∈
∈ ∈
∑ ∑

Z Z

J Tmin, max, ,
	

(8.60)

	
u u j tjt

z
jt

z

= ∀ ∈ ∈
∈
∑ disp

Z
J T,

	
(8.61)
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A	hydroplant	may	have	prohibited	operating	zone(s)	due	to	oscillations	and	physical	
limitations	 of	 unit	 components	 [48].	 For	 an	 online	 hydroplant	 with	 n	−	1	 prohibited	
operating	zone(s),	the	total	operating	region	is	divided	into	n	discrete	subregions,	named	
permissible	operating	zones,	and	the	hydroplant	must	operate	in	one	of	these	subregions	
(see	Figure	8.8).

Constraints	 8.60	 and	 8.61	 ensure	 that	 the	 power	 output	 of	 a	 hydroplant	 j	 will	 be	
within	the	bounds	of	only	one	permissible	operating	zone	in	every	hour	t	that	hydro-
plant	j	is	in	dispatchable	phase.

8.3.4.4  Discrete Pumping

	
p g P h tht

A
ht
n

A h
n

n

= ⋅ ∀ ∈ ∈
∈
∑ ,

N
H T,

	
(8.62)

	 g u n h tht
n

ht
h+ ≤ ∀ ∈ ∈ ∈disp 1 N H T, , 	 (8.63)

Constraints	8.62	ensure	that	the	pumping	load	of	a	pumped	storage	plant	h	is	equal	
to the	sum	of	the	online	units’	pumping	load.	In	this	modeling,	the	rotation	frequency	
(r/min)	of	a	pumping	unit	turbine	n	is	constant,	resulting	in	a	discrete	pumping	load,	
PA h

n
, .	Recently,	variable	frequency	motors	are	also	used	for	pumping,	allowing	for	con-

tinuous	pumping	load	variation.
Constraints	8.63	prohibit	simultaneous	pumping	and	generation	mode	operation	[17].

8.3.4.5  Hydro Energy Limitations

	

E p E jj jt
t

j
min max≤ ≤ ∀ ∈

∈
∑

T
J

	
(8.64)

Constraints	8.64	establish	lower	and	upper	bounds	on	the	sum	of	the	energy	produc-
tion	(in	MWh)	of	a	hydroplant	j	during	the	scheduling	horizon.	In	fact,	the	upper	pro-
duction	bound	is	selected	to	be	consistent	with	a	medium-term	planning	policy,	whereas	
the	lower	bound	is	usually	imposed	in	order	to	avoid	spillage	as	well	as	due	to	require-
ments	of	irrigation,	navigation,	recreation,	and	so	on.	These	constraints	comprise	a	sim-
ple	“energy-only”	modeling	of	the	hydro	resources	management.

Pj
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min Pj
max,l

u1
jt = 0 uz

jt = 1 un
jt = 0

Pj
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max,z Pj
min,n Pj

max,n = Pj
maxpjt… …

FIGURE 8.8 Hydroplant	permissible	operating	zones.
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8.3.4.6  Reservoir Dynamics

Apart	from	the	simple	hydro	energy	limitations	given	by	Equation	8.64,	the	hydraulic	
coupling	among	cascaded	hydroplants	is	explicitly	formulated.	In	addition,	a	possible	
time	delay	between	the	discharge	of	a	hydroplant	and	the	resulting	inflows	of	the	down-
stream	 reservoir	 is	 also	 taken	 into	 account.	 Finally,	 forecast	 net	 water	 inflows	 are	
assumed	to	be	known.

	

v v M I q sp q

M q sp

jt j t jt jt jt jt
A

j t d j t du
ju

u
j

= + ⋅ − − +⎡⎣ ⎤⎦

+ ⋅ +

−

− −

( )

( ) (

1

uu
u

ju
u

q j tj t d
A

j

J T) ( )−⎡
⎣⎢

⎤
⎦⎥

∀ ∈ ∈−

∈

∑
Ju

,
	

(8.65)

	 0 ≤ ≤ ∀ ∈ ∈v V j tjt j J Tmax , 	 (8.66)

	 v V jj j J0 = ∀ ∈ini
	 (8.67)

	 v V jjT j J= ∀ ∈fin
	 (8.68)

where	q e sc pjt
A

j
A

j
A

jt
A= ⋅ ⋅ 	denotes	 the	water	flow	(in	m3/s)	 from	the	 lower	 to	 the	upper	

reservoir	in	the	case	of	a	pumped	storage	plant	while	operating	in	pump	mode.
Constraints	8.65	represent	the	hourly	reservoir	water	balance,	taking	into	account	the	

operation	(including	pumping)	of	the	upstream	hydroplants	of	a	given	hydroplant	and	
the	related	 time	delay,	dju ,	whereas	constraints	8.66	state	 the	reservoir	stored	volume	
limits.

Constraints	 8.67	 and	 8.68	 define	 the	 initial	 and	 final	 (target)	 reservoir	 volumes,	
respectively.	Initial	and	final	reservoir	contents	are	usually	obtained	by	medium-term	
planning	studies	and,	 in	general,	 the	final	water	content	of	each	reservoir	 is	different	
from	its	initial	value.

The	incorporation	of	constraints	8.65	through	8.68	in	the	model	formulation	usually	
requires	that	the	simple	energy-only	modeling	given	by	Equation	8.64	be	disregarded.

8.3.4.7  Variable Head Modeling

As	 already	 mentioned	 in	 the	 introduction,	 to	 formulate	 precisely	 the	 self-scheduling	
problem	of	a	hydro	subsystem,	it	is	essential	to	model	the	generation	characteristics	of	
hydroplants	describing	the	relationship	between	the	head	of	the	associated	reservoir,	the	
water	 discharged,	 and	 the	 hydroplant	 power	 output.	 This	 relationship	 is	 often	 repre-
sented	by	a	set	of	nonlinear	unit	performance	curves,	which	comprise	the	well-known	
Hill	diagram	(see	Figure	8.9).

Due	 to	 the	 nonlinear	 nature	 of	 the	 head	 effect,	 most	 optimization	 models	 dealing	
with	daily	operation	of	the	hydro	system	neglect	the	effect	of	the	reservoir	head	varia-
tion	 on	 the	 hydroplants	 operating	 schedule	 (commitment	 and	 dispatch)	 or	 deal	 with	
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simplifications,	such	as	the	concave	piecewise	linear	approximation	or	the	modeling	of	
the	best	local	efficiency	points.

An	early	attempt	to	provide	an	explicit	0/1	MILP	approach	for	the	solution	of	the	head	
effect	problem	under	the	hydrothermal	Producer	self-scheduling	framework	is	given	in	
Reference	 [18],	 where	 the	 set	 of	 curves	 of	 the	 Hill	 diagram	 is	 reduced	 to	 three	 curves	
according	to	two	levels	of	the	stored	water	in	the	reservoir,	and	each	curve	is	approximated	
by	a	piecewise	linear	function.	This	approach	is	extended	in	Reference	[19],	where	a	more	
sophisticated	modeling	is	introduced	through	an	enhanced	linearization	technique	based	
on	two-dimensional	considerations	for	the	nonlinear	relationship	among	water	volume,	
discharge,	and	power	output.	Although	this	approach	leads	to	a	more	precise	representa-
tion	of	the	head	effect,	the	computational	burden	caused	and	the	computing	time	required	
are	considerably	increased.

This	paragraph	presents	a	simplified	version	of	the	0/1	MILP	approach	presented	in	
Reference	[18]	for	the	modeling	of	the	relationship	between	the	performance	curves	and	
the	variation	of	the	water	volume	of	the	reservoir.	In	this	model,	the	power	output	of	a	
hydroplant	j	is	considered	to	be	a	linear	function	of	the	water	discharge	for	a	given	curve	
(see	 Figure	 8.10)	 instead	 of	 a	 piecewise	 linear	 function	 [18].	 However,	 this	 simplified	
model	is	extended	to	take	into	account	the	capability	of	the	hydroplants	to	operate	under	
AGC	and/or	contribute	in	the	various	types	of	reserves,	as	already	described	in	the	pre-
vious	paragraphs.	Figure	8.10	illustrates	the	linearization	of	the	performance	curves	of	
a	hydroplant	j,	whereas	Figure	8.11	shows	how	the	power	output	limits	of	a	hydroplant	j	
are	modified	according	 to	 the	water	content	of	 the	reservoir	(reservoir	volume	zone).	
Note	that	the	specific	consumption	of	a	hydroplant	j	[in	(m3/s)/MW]	decreases	and,	sub-
sequently,	the	slope	of	the	hydroplant	performance	curves	increases	with	the	increase	in	
the	reservoir	water	content.

Although	in	this	model	no	additional	binary	variables	are	used	for	the	linearization	
of	the	nonconvex	performance	curves,	the	present	formulation	leads	to	increased	com-
putational	burden	and	subsequent	slow	execution	times	due	to	the	complex	modeling	of	
the	operating	constraints	of	hydroplants	(AGC	and	reserves	modeling).

Qj
min

Pjt
(MW)

Qj
max qjt (m3/s)

vjt

0

FIGURE 8.9 Hill	diagram.



8-23Hydrothermal Producer Self-Scheduling

The	general	mixed-integer	linear	formulation	for	the	discretization	of	the	reservoir	in	
K	water	volume	zones	is	given	by	the	following	constraints:

	
v V x x j tjt j

k
jt
k

jt
k

k

K
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FIGURE 8.10 Performance	curves	of	hydroplant	j.
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8-24 Electric Power Systems

	 x x k K j tjt
k

jt
k J T≥ ∀ = − ∈ ∈+1 1 1, ,   , , 	 (8.71)

In	the	above	formulation,	binary	variables	x jt
k 	are	used	for	the	selection	of	the	correct	

curve	according	to	the	reservoir	volume.	Table	8.4	presents	the	permissible	combina-
tions	of	values	0–1	for	all	binary	variables	involved,	as	required	by	constraints	8.71	and	
considering	that	always	x jt

0 1= 	and	x jt
K = 0.

The	mixed-integer	linear	formulation	of	the	hydroplant	performance	curves	is	defined	
by	the	following	constraints:
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TABLE 8.4 Reservoir	Volume	Zones	Discretization

Reservoir	
Volume	Zone

x jt
1 x jt

2 x jt
k−1 x jt

k x jt
k+1

1 0 0 0 0 0
2 1 0 0 0 0
3 1 1 0 0 0
k 1 1 1 0 0
k	+	1 1 1 1 1 0
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Constraints	8.72	and	8.73	denote	that	the	water	discharge	of	hydroplant	j	in	each	hour	
is	equal	to	the	minimum	water	discharge	(operating	under	AGC	or	not)	plus	the	portion	
of	the	water	discharged	needed	to	obtain	the	desirable	power	output	and	cannot	exceed	
the	maximum	water	discharge	of	the	hydroplant.	Constraints	8.74	and	8.75	define	the	
hydroplant	 power	 output	 in	 relation	 to	 the	 reservoir	 volume	 zone	 and	 taking	 into	
account	the	possible	operation	of	the	hydroplant	under	AGC.	It	should	be	noted	that	N	
is	a	large	constant,	so	that	constraints	8.74	and	8.75	are	relaxed	for	all	possible	combina-
tions	of	binary	variables	x jt

k 	other	than	those	corresponding	to	the	appropriate	reservoir	
volume	zone	(see	Table	8.4).

Similarly,	constraints	8.76	through	8.78	enforce	the	power	output	plus/minus	the	cor-
responding	reserves	contribution	of	a	hydroplant	j	to	be	within	the	nominal	limits	cor-
responding	to	the	correct	reservoir	volume	zone.	Finally,	constraints	8.79	and	8.80	define	
the	 tertiary	 nonspinning	 reserve	 contribution	 limits	 for	 hydroplant	 j,	 as	 these	 limits	
strongly	depend	on	the	current	reservoir	volume	zone	(see	also	Figure	8.10).

Note	that,	in	the	case	of	the	variable	head	modeling,	constraints	8.76	through	8.78,	
8.79,	and	8.80	should	substitute	the	initial	power	output	and	reserves	contribution	con-
straints	8.56	through	8.58,	8.53,	and	8.54,	respectively,	in	the	model	formulation.

The	 incorporation	 of	 the	 variable	 head	 modeling	 in	 the	 hydrothermal	 Producer	
self-scheduling	problem	increases	significantly	the	computational	burden	due	to	the	
inclusion	of	the	additional	binary	variables	x jt

k 	as	well	as	the	complex	constraints	8.72	
through	8.80.	Thus,	a	simplified	hydro	model	that	does	not	take	into	account	the	vari-
able	head	modeling	as	well	as	the	minimum	water	discharge	of	a	hydroplant	is	given	
by	constraints	8.53,	8.54,	8.56	through	8.58,	and	constraints	8.81	through	8.83	below:

	
p sc q j J t Tjt

j
jt= ∀ ∈ ∈

1
av ,

	
(8.81)

	 0 ≤ ≤ ∀ ∈ ∈q Q j J t Tjt j
max , 	 (8.82)
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In	this	case,	the	power	output	of	a	hydroplant	j	is	considered	to	vary	proportionally	
to	 the	 water	 discharge,	 where	 the	 average	 specific	 consumption	 is	 considered	 to	 be	
equal	to	the	mean	value	of	the	specific	consumptions	that	correspond	to	all	reservoir	
volume	zones,	as	follows:

	
sc
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K jj
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∑

K

	

(8.83)

This	simplified	model	is	suitable	for	the	daily	self-scheduling	problem	formulation	of	
hydroplants	 with	 large	 reservoirs,	 as	 the	 daily	 variation	 of	 the	 head	 of	 the	 upstream	
reservoir	has	little	effect	on	the	energy	production	of	hydroplants	with	large	dams.	On	
the	contrary,	when	a	longer	scheduling	period	is	considered	and/or	the	hydro	subsystem	
involves	 hydroplants	 associated	 with	 small	 reservoirs,	 the	 variable	 head	 modeling	
already	discussed	leads	to	more	accurate	results.

In	each	case,	for	the	sake	of	simplicity,	the	specific	consumption	of	the	pumped	stor-
age	plants	while	operating	in	pump	mode,	sch

A ,	is	considered	to	be	equal	to	the	respective	
average	specific	consumption	while	operating	in	generation	mode,	sch

av ,	that	is,	no	vari-
able	head	modeling	is	considered	for	the	pumping	operation.

In	the	numerical	application	section,	an	indicative	test	case	illustrating	the	usefulness	
of	 the	 variable	 head	 modeling	 for	 a	 hydro	 system	 comprising	 both	 large	 and	 small	
hydroplants/reservoirs	is	analytically	discussed.

8.3.5  System Constraints
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The	system	(coupling)	constraints	8.84	through	8.89	are	necessary	only	in	the	case	of	
a	hydrothermal	Producer	acting	as	a	price-taker	and	reflect	the	fact	that,	no	matter	how	
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high	the	energy	and	the	reserves	prices	are,	the	energy	and	the	reserves	that	the	system	
operator	 will	 purchase	 from	 the	 Producer	 will	 not	 exceed	 the	 corresponding	 system	
requirements.	These	coupling	constraints	may	be	relaxed	if	the	size	of	the	Producer	is	
small	compared	to	the	system	requirements.	In	this	case,	the	price-taker	Producer	prob-
lem	may	be	decomposed	by	unit.

In	the	case	of	the	price-maker	hydrothermal	Producer	these	constraints	are	redun-
dant,	as	the	maximum	quantity	of	energy	and	reserves	of	the	Producer	that	will	be	pur-
chased	 by	 the	 system	 operator	 is	 defined	 indirectly	 by	 the	 hourly	 residual	 demand	
curves,	as	already	discussed	in	Section	8.2.2.1.

8.3.6  Hydrothermal Producer also Acting as a Retailer

In	this	section,	the	hydrothermal	Producer	is	considered	to	act	as	a	dominant	price-maker	
Producer	as	well	as	a	dominant	retail	service	provider	(henceforth,	“Retailer”)	through	
forward	bilateral	contracts	with	end-consumers.	Therefore,	the	Producer	is	considered	to	
be	a	power	company	with	a	dominant	role	in	both	the	production	and	retail	sectors	of	an	
electricity	market.	As	a	Retailer,	the	Producer	buys	energy	from	the	day-ahead	market	at	
the	hourly	MCPs	and	sells	it	to	end-consumers	at	predefined	quantities	and	prices	in	order	
to	fulfill	daily	contractual	obligations.	Following	a	specific	rule	in	several	electricity	mar-
kets	(such	as	the	Greek	electricity	market),	the	Retailer	is	also	charged	for	the	procurement	
of	reserves	in	proportion	to	the	forward	contracted	quantity	of	energy.

The	incorporation	of	forward	bilateral	contracts	along	with	the	procurement	cost	of	
the	associated	reserves	in	the	optimization	target	of	the	self-scheduling	problem	seri-
ously	 affect	 the	 self-scheduling	 program	 of	 the	 power	 company	 that	 acts	 as	 a	 price-
maker	 in	 the	 production	 sector.	 Numerical	 results	 show	 that	 the	 power	 company’s	
incentive	to	withhold	capacity	and	increase	the	short-term	electricity	prices	is	signifi-
cantly	reduced	by	the	presence	of	forward	bilateral	contracts	and	the	procurement	cost	
of	the	associated	reserves.

In	the	case	that	the	price-maker	Producer	acts	also	as	a	Retailer,	the	objective	function	
of	the	self-scheduling	problem	8.3	is	transformed	as	follows:
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or,	equivalently:
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The	power	company’s	profit	during	the	scheduling	period	in	Equation	8.90	or,	equiva-
lently,	Equation	8.91	is	computed	as	the	difference	between	its	revenue	from	the	day-
ahead	energy	and	reserves	markets	as	well	as	the	forward	bilateral	contracts	for	energy	
delivery	minus	the	procurement	cost	for	energy	and	reserves	and	the	units’	total	operat-
ing	cost.

As	a	Retailer,	the	power	company	is	charged	for	the	procurement	of	reserves	in	pro-
portion	to	its	forward	contracted	quantity	of	energy,	as	follows:
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D RRt
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The	optimization	problem	of	the	power	company	is	also	subject	to	the	system	and	unit	
operating	constraints	8.5	through	8.83,	already	described	in	the	previous	sections.

8.3.7  Model Summary

To	sum	up,	the	mathematical	formulation	of	the	deterministic	hydrothermal	Producer	
self-scheduling	problem	presented	in	Sections	8.2	through	8.3.6	can	be	classified	in	dif-
ferent	categories	regarding	the	problem	objective	as	well	as	the	generating	units	operat-
ing	constraints	and	system	constraints,	as	follows:

	 1.	 Price-taker Producer:	In	the	case	of	a	price-taker	Producer,	the	objective	function	
to	be	maximized	is	given	by	Equation	8.1.	System	constraints	8.84	through	8.89	
must	also	be	added	to	the	model	formulation.

	 2.	 Price-maker Producer:	In	the	case	of	a	price-maker	Producer,	objective	function	
8.4	is	used	along	with	constraints	8.5	through	8.10	needed	for	the	linearization	of	
the	respective	residual	demand	curves.

	 3.	 Price-maker  Producer  and  Retailer:	 In	 the	 case	 of	 a	 price-maker	 Producer	 also	
acting	as	a	Retailer,	objective	function	8.4	must	be	replaced	by	function	8.91	and	
Equation	8.92	should	also	be	added	to	the	model.

Regarding	the	operating	constraints	of	generating	units,	different	constraints	must	be	
included	in	the	model	formulation	for	the	thermal	and	hydro	subsystems,	respectively,	
as	follows:

	 i.	 Thermal System:	Constraints	8.11	through	8.48	are	necessary	for	the	thermal	sys-
tem	modeling	in	all	cases.

	 ii.	 Hydro System:	Three	models	with	regard	to	the	water	resources	management,	the	
reservoir	 dynamics,	 and	 the	 modeling	 of	 the	 head	 effect	 can	 be	 considered	 in	
ascending	order	of	complexity,	as	follows:

	 a.	 Energy-only  Model:	 The	 simplest	 hydro	 model	 comprises	 the	 energy-only	
modeling,	whereas	no	head	variation	dependence	is	explicitly	formulated.	In	
this	 case,	 constraints	 8.23	 through	 8.27,	 8.41,	 8.42,	 and	 8.49	 through	 8.64	
must	be	included	in	the	model	formulation.

	 b.	 Hydraulic  Coupling  Model:	 This	 model	 differentiates	 from	 the	 energy-only	
model	in	that	constraints	8.64	must	be	replaced	by	constraints	8.65	through	
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8.68	denoting	the	reservoir	dynamics	and	Equations	8.81	through	8.83	must	
be	 taken	 into	 account.	 Therefore,	 this	 model	 comprises	 the	 following	 con-
straints:	8.23	through	8.27,	8.41,	8.42,	8.49	through	8.63,	8.65	through	8.68,	
and	8.81	through	8.83.

	 c.	 Full Hydro Model:	In	this	model,	the	reservoir	dynamics	as	well	as	the	rela-
tionship	between	the	head	of	the	associated	reservoir,	the	water	discharged,	
and	 the	 hydroplant	 power	 output	 is	 taken	 into	 account.	 In	 this	 case,	 the	
	following	constraints	constitute	the	hydro	system	model:	8.23	through	8.27,	
8.41,	8.42,	8.49	through	8.52,	8.55,	8.59	through	8.63,	and	8.65	through	8.80.

8.4  Uncertainty Modeling

As	already	mentioned,	in	all	previous	sections	of	this	chapter,	the	solution	of	the	hydro-
thermal	 Producer	 self-scheduling	 problem	 is	 based	 on	 the	 Producer’s	 deterministic	
knowledge	of	the	day-ahead	market	conditions,	regarding	either	the	MCPs	(in	the	case	
that	the	Producer	acts	as	a	price-taker)	or	the	system	requirements	and	competitors’	
offers	for	all	market	products	(in	the	case	that	the	Producer	acts	as	a	price-maker).	In	
each	case,	 the	Producer’s	estimates	exhibit	some	degree	of	uncertainty,	which,	 if	not	
appropriately	addressed,	may	lead	to	a	subsequent	offering	strategy	that	will	yield	sub-
optimal	 solutions	 regarding	 both	 the	 generating	 units’	 commitment	 and	 Producer	
profits	from	its	participation	in	day-ahead	markets.

To	 take	 into	 account	 market	 uncertainty,	 as	 the	 uncertain	 input	 parameters	 may	
usually	be	described	through	probability	functions,	a	common	practice	is	to	approxi-
mate	the	probability	distribution	of	the	input	parameters	by	a	number	of	scenarios	with	
associated	probabilities	of	occurrence.	For	instance,	random	parameter	θ	(e.g.,	MCP	in	
the	price-taker	Producer	problem)	can	be	represented	by	θ(ω),	ω	∈	Ω	=	{1,	2,	 . . .,	Ω},	
where	ω	is	the	scenario	index	and	Ω	is	the	number	of	scenarios.	Each	realization	θ(ω)	is	
associated	with	a	probability	of	occurrence	probω,	defined	as
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One	option	is	to	solve	the	deterministic	optimization	problem	already	described	in	
the	 previous	 sections	 by	 substituting	 the	 forecast	 input	 parameters	 (MCPs	 or	 system	
requirements	and	competitors’	offers)	by	their	respective	expected	values.	Although	this	
option	may	seem	efficient,	it	usually	does	not	result	in	the	best	possible	outcome.

A	more	sophisticated	alternative	option	is	to	formulate	the	hydrothermal	Producer	self-
scheduling	problem	in	a	stochastic	programming	framework.	The	basic	idea	of	the	sto-
chastic	programming	is	that	(optimal)	decisions	should	be	based	on	data	available	at	the	
time	the	decisions	are	made	and	should	not	depend	on	future	observations.	In	other	words,	
the	optimization	of	the	decision-making	under	uncertainty	is	closely	related	to	the	con-
cept	of	hedging	against	all	possible	future	realizations	of	the	random	parameters.

In	 this	 section,	 the	 deterministic	 hydrothermal	 Producer	 self-scheduling	 problem	
is  appropriately	 converted	 to	 a	 stochastic	 optimization	 problem	 and	 the	 associated	
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	formulation	is	presented.	For	the	reader’s	convenience,	a	brief	introduction	on	the	basics	
of	the	stochastic	programming	is	given	in	the	immediately	following	section.	Further	
information	on	stochastic	optimization	can	be	found	in	References	[49,50].

8.4.1  Stochastic Programming Basics

Each	 stochastic	 programming	 problem	 is	 defined	 in	 a	 number	 of	 stages.	 Each	 stage	
denotes	a	point	in	time	where	related	decisions	are	made	or	uncertainty	is	revealed.	In	
general,	stochastic	programming	problems	are	grouped	in	two	categories	depending	on	
the	number	of	stages	considered,	namely	two-stage	and	multistage stochastic program-
ming problems.	As	the	hydrothermal	Producer	self-scheduling	problem	is	later	formu-
lated	 as	 a	 two-stage	 stochastic	 problem,	 in	 this	 section	 the	 two-stage	 stochastic	
programming	 problems	 are	 only	 described.	 The	 multistage	 stochastic	 programming	
problems	are	formulated	similarly	[28,49].

In	a	two-stage	stochastic	programming	framework,	variables	that	represent		decisions	
that	are	made	before	the	uncertainty	is	revealed	are	known	as	first-stage	or		here-and-now	
variables.	Decision	variables	representing	decisions	that	are	made	once	the	uncertainty	
is	 revealed	 are	 known	 as	 second-stage	 or	 wait-and-see	 variables.	 If	 uncertainty	
is  	modeled	 through	a	number	of	 scenarios,	 second-stage	variables	are	dependent	on	
each	scenario,	whereas	first-stage	variables	are	identical	for	all	scenarios	(nonanticipa-
tivity)	[49].

In	general,	a	stochastic	programming	problem	can	be	represented	by	a	scenario	tree.	
The	scenario	tree	consists	of	a	set	of	nodes	and	branches.	The	nodes	represent	the	points	
where	decisions	are	made	or	uncertainty	is	revealed	(stages).	Each	node,	except	the	root	
node,	has	a	single	predecessor	and	may	have	several	successors.	The	first	node,	where	
first-stage	decisions	are	made,	is	called	the	root.	Nodes	without	any	successors	are	called	
leaves.	The	nodes	connected	to	the	root	node	represent	second-stage	decisions,	and	in	a	
two-stage	stochastic	programming	problem	are	also	the	leaves	of	the	tree.	The	branches	
represent	different	realizations	of	random	parameters.	Figure	8.12	illustrates	a	simple	
scenario	tree	for	a	two-stage	stochastic	problem.

…
…

1st stage 2nd stage

Leaf

Root

Branch
1

2

ω

Ω – 1

Ω

FIGURE 8.12 Two-stage	scenario	tree.
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In	a	two-stage	stochastic	programming	problem,	an	optimal	policy	is	devised	against	
all	possible	future	realizations	of	a	random	parameter,	θ(ω).	This	optimal	strategy	con-
sists	 of	 taking	 an	 initial	 decision,	 x	 (first-stage	 decision),	 before	 the	 uncertainty	 is	
revealed,	observing	the	realization	of	the	random	parameter,	θ(ω),	and	then	taking	a	
corrective	decision,	y(ω)	(second-stage	decision),	tailored	to	the	realization	of	the	ran-
dom	parameter	(recourse	action).	Note	that	the	corrective	decision,	y(ω),	depends	also	
on	the	initial	decision,	x.

The	general	formulation	of	a	two-stage	stochastic	linear	programming	problem	with	
recourse	is	as	follows:

	
min min ( ) ( )c x E q yT + ⎡⎣ ⎤⎦{ }ω ωΤ

	
(8.94)

subject	to

	 Ax b= 	 (8.95)

	 W y T x h( ) ( ) ( ) ( )ω ω ω ω+ = 	 (8.96)

	 x X y Y∈ ∈, ( )ω 	 (8.97)

In	the	case	that	some	of	the	variables,	x,	y(ω),	are	integers,	Equations	8.94	through	
8.97	represent	a	 stochastic	MILP	problem.	 In	Equations	8.94	through	8.97,	decision	
variables	x	are	first-stage	variables,	whereas	decision	variables	y(ω)	are	second-stage	
variables.

Note	 that	 the	 use	 of	 the	 stochastic	 programming	 approach	 even	 under	 a	 limited	
number	of	scenarios	usually	leads	to	a	dramatic	increase	in	the	size	of	the	problem	to	
be	solved	and	may	even	lead	to	intractability,	due	to	the	enormous	number	of	equations	
and	variables	simultaneously	considered.	Therefore,	the	respective	deterministic	prob-
lem	to	be	converted	into	a	stochastic	one	should	be	as	simple	as	possible,	in	order	to	
yield	feasible	solutions.

In	 the	 following	 section,	 the	 hydrothermal	 Producer	 self-scheduling	 problem	 is	
explicitly	formulated	as	a	two-stage	stochastic	programming	problem	with	recourse.

8.4.2   Formulation of the Hydrothermal Producer Self-Scheduling 
Problem as a Two-Stage Stochastic Programming Problem 
with Recourse

In	this	section,	the	hydrothermal	Producer	self-scheduling	problem	is	formulated	as	a	
two-stage	stochastic	programming	problem	with	recourse.	For	consistency,	we	consider	
a	price-maker	Producer	that	acts	also	as	a	Retailer	through	forward	bilateral	contracts	
with	the	end-consumers,	thus	forming	a	dominant	power	company,	as	already	described	
in	Section	8.3.6.

To	reduce	the	problem	size,	the	Producer	is	considered	to	participate	in	the	energy	
market	 only	 (no	 reserves	 markets	 are	 considered).	 In	 addition,	 regarding	 the	 hydro	
model,	head	dependencies	are	ignored.
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As	 the	 Producer	 acts	 as	 a	 price-maker	 in	 the	 day-ahead	 energy	 market	 only,	 the	
uncertainty	 of	 the	 market	 conditions	 is	 limited	 in	 the	 uncertainty	 of	 the	 respective	
residual	demand	curves.	Under	the	two-stage	stochastic	programming	formulation	of	
the	Producer	self-scheduling	problem,	the	aim	of	the	Producer	is	to	devise	its	optimal	
offering	strategy	for	its	own	generating	units.	In	other	words,	 instead	of	computing	a	
single-step	offer	curve	for	each	hour	and	each	generating	unit	(deterministic	problem),	
the	Producer	is	now	capable	of	deriving	a	multistep	offer	curve	for	each	hour	and	each	
generating	 unit,	 taking	 into	 account	 the	 uncertain	 behavior	 of	 competitors	 through	
scenario-dependent	residual	demand	curves.

The	formulation	of	this	problem	as	a	two-stage	stochastic	programming	problem	lies	
in	the	fact	that	the	commitment	decisions	for	each	generating	unit	are	considered	to	be	
scenario-independent,	and,	 therefore,	are	unique	 for	all	possible	scenarios	 (first-stage	
decisions),	whereas	the	power	output	of	each	generating	unit	depends	on	the	realization	
of	each	scenario	(second-stage	decisions).

In	the	proposed	two-stage	stochastic	model,	the	risk	associated	with	the	profit	variabil-
ity	is	explicitly	taken	into	account	through	the	CVaR,	which	has	already	been	analytically	
described	in	Chapter	2.

In	Section	8.4.2.1	the	construction	of	the	scenario-dependent	residual	demand	curves	
is	 described,	 whereas	 in	 Section	 8.4.2.2	 the	 explicit	 mathematical	 formulation	 of	 the	
aforementioned	 two-stage	 stochastic	 programming	 problem	 is	 presented.	 In	 Section	
8.4.2.3	 the	 risk-constrained	 formulation	 of	 the	 Producer	 self-scheduling	 problem	 is	
presented.

8.4.2.1  Representing Uncertainty of the Residual Demand Curves

The	 formulation	 of	 the	 Producer’s	 residual	 demand	 curves	 entails	 a	 high	 degree	 of	
uncertainty,	regarding	the	estimates	of	 the	system	load	demand	and	the	competitors’	
energy	offers.

In	some	electricity	markets,	(such	as	the	Greek	one),	the	system	load	forecast	and	the	
forecast	for	the	energy	injection	from	renewable	energy	sources	(which	is	considered	as	
nonpriced	 energy	 injection	 and,	 therefore,	 is	 subtracted	 from	 the	 total	 system	 load	
demand	to	be	served	by	the	conventional	generating	units)	that	the	market	operator	uses	
for	the	clearing	of	the	day-ahead	market	become	publicly	available	few	hours	before	the	
participants	 submit	 their	offers.	Therefore,	we	consider	 that	 the	Producer	has	perfect	
knowledge	of	the	net	system	load	demand	(defined	as	the	difference	between	the	total	
system	load	and	the	renewable	energy	sources	injection)	before	computing	its	own	self-
schedule	and,	subsequently,	submitting	its	own	offer	curves.

The	competitors’	energy	offers	can	be	estimated	on	the	basis	of	the	Producer’s	gath-
ered	 information	 on	 competitors	 (through	 press	 releases,	 etc.)	 and	 on	 ISO-released	
information	on	past	market	outcomes;	in	some	electricity	markets	the	energy	offers	of	
all	participants	become	public	information	some	time	after	the	market	clearing	[51,52].	
In	addition,	the	Producer	may	wish	to	incorporate	uncertainties	due	to	unpredictable	
events,	such	as	the	competitor	unit	outages.

Hence,	we	assume	that	 the	Producer	faces	Ω	possible	series	of	24	residual	demand	
curves.	Considering	only	one	realization	(scenario)	ω,	one	can	compute	the	total	hourly	
Producer	quota,	ξωt ,	as	well	as	the	power	output	of	each	Producer	generating	unit,	pit

ω,	for	
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each	hour	of	the	scheduling	horizon,	resulting	in	the	vectors	of	quantities	( , , ..., )ξ ξ ξω ω ω
1 2 24 	

and	( , , ..., )p p pi i i1 2 24
ω ω ω 	for	each	realization	ω,		respectively.	Obviously,	for	each	realization	

ω,	 the	 Producer	 quota	 is	 equal	 to	 the	 sum	 of	 the	 generating	 unit	 power	 output,	 as	
required	by	Equation	8.5,	if	all	variables	are	augmented	with	superscript	ω.

As	already	mentioned,	each	hourly	quota	corresponds	to	a	resulting	MCP	from	
the  respective	 residual	 demand	 curve.	 Thus,	 the	 vector	 of	 quantities	 for	 each	
	realization	 ω,	 ( , , ..., )ξ ξ ξω ω ω

1 2 24 	 results	 in	 a	 vector	 of	 respective	 clearing	 prices	
π ξ π ξ π ξω ω ω ω ω ω

1 1 1 2 24 24( ), ( ) ,..., ( )  ( )	(see	Figure	8.13).
In	the	case	that	the	Producer	participates	in	a	financial	market,	where	the	Producers	are	

allowed	 to	 submit	 a	 single	 offer	 curve	 for	 their	 entire	 quota	 (portfolio	 offer),	 each	 pair	
ξ π ξω ω ω

t t t, ( )( )	can	be	considered	as	the	offer	decided	by	the	Producer	for	hour	t	and	realiza-
tion	ω.	Conversely,	in	the	case	that	a	physical	electricity	market	is	considered,	each	generat-
ing	 unit	 is	 obliged	 to	 submit	 its	 own	 energy	 offer	 curve.	 In	 this	 chapter,	 we	 consider	 a	
physical	electricity	market	and,	therefore,	each	Producer	unit’s	energy	offer	for	hour	t	and	
realization	ω	is	represented	by	the	quantity	(MWh)–price	(€/MWh)	pair	 pit t t

ω ω ωπ ξ, ( ) .( )
Following	the	logic	presented	in	Reference	[2],	if	we	focus	on	a	particular	hour	t,	it	is	

concluded	 that	 the	 Ω	 quantities	 and	 the	 Ω	 prices	 decided	 by	 the	 Producer	 for	 each	
	generating	unit	i,	although	corresponding	to	different	market	outcomes,	constitute	the	
offer	curve	that	the	generating	unit	should	submit	to	the	market	for	that	hour.

πt
  (ξt)

(€/MWh)
πt

  (ξt)
(€/MWh)

πt (ξt)
(€/MWh)

π1 (ξ1)

ξ1 Quota (MWh)

π2 (ξ2)

ξ2 Quota (MWh)

π24 (ξ24)

ξ24

…

Quota (MWh)

FIGURE 8.13 Twenty-four	residual	demand	curves	for	each	realization	ω.
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To	guarantee	that	the	offer	curve	decided	by	the	model	is	nondecreasing	(as	required	
by	most	day-ahead	energy	markets),	the	following	condition	must	hold	for	each	pair	of	
offers	 p pit t t it t t

ω ω ω ω ω ωπ ξ π ξ, ( ) , , ( )  ( ) ( ){ }ʹ ʹ ʹ 	submitted	for	hour	t	for	each	generating	unit	i:

	
pit pit t t t t i I t Tω ω πω ξω πω ξω ω ω ω ω− ʹ( ) ⋅ ( ) − ʹ ʹ( )⎛

⎝ ) ≥ ∀ ∈ ∈ ʹ ∈ ʹ >0 , , , ,Ω
	

(8.98)

The	above	nonlinear	expression	 is	equivalent	 to	 the	 following	group	of	 linear	con-
straints	[2]:

	 p p x M i tit it t
p I Tω ω ωω ω ω ω ω− ≥ − ⋅ ∀ ∈ ∈ ʹ ∈ ʹ >ʹ ʹ , , ,, Ω 	 (8.99)

	 p p x M i tit it t
p I Tʹ ʹ− ≥ − − ⋅ ∀ ∈ ∈ ʹ ∈ ʹ >ω ω ωω ω ω ω ω( ) ,, , ,1 Ω 	 (8.100)

	 π ξ π ξ ω ω ω ωω ω ω ω ωω π
t t t t tx M i tI T( ) − ( ) ≥ − ⋅ ∀ ∈ ∈ ʹ ∈ ʹ >ʹ ʹ ʹ , , ,, Ω 	 (8.101)

	 	 π ξ π ξ ω ω ω ωω ω ω ω ωω π
t t t t tx M i tI Tʹ ʹ ʹ( ) − ( ) ≥ − − ⋅ ∀ ∈ ∈ ʹ ∈ ʹ >( ) ,, , ,1 Ω 	 (8.102)

where	Mp	is	a	big	quantity,	Mπ	is	a	big	price,	and	xt
ωωʹ 	is	a	binary	variable.	If	xt

ωωʹ = 0,	
then	p pit it

ω ω≥ ʹ	and	π ξ π ξω ω ω ω
t t t t( ) ≥ ( )ʹ ʹ .	If	xt

ωωʹ = 1,	then	p pit it
ω ω≤ ʹ 	and	π ξ π ξω ω ω ω

t t t t( ) ≤ ( )ʹ ʹ .
In	each	case,	the	nondecreasing	nature	of	the	offer	curves	is	assured.

8.4.2.2   Mathematical Formulation of the Hydrothermal Producer 
Self-Scheduling Problem as a Two-Stage Stochastic Programming 
Problem

As	 already	 mentioned	 in	 the	 previous	 section,	 in	 the	 presence	 of	 uncertainty	 in	 the	
residual	demand	curves,	the	Producer	is	considered	to	face	Ω	possible	series	of	24	resid-
ual	demand	curves	(scenarios),	each	with	associated	probability	probω.

In	the	case	that	the	price-maker	Producer	acts	also	as	a	Retailer,	the	objective	func-
tion	of	the	proposed	stochastic	model	results	from	the	respective	objective	functions	of	
the	deterministic	self-scheduling	problem	8.90	as	follows:

Max prob CQ CP c p
t t t t t t it itt
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or,	equivalently,
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As	 in	 the	 stochastic	 optimization	 problem	 only	 the	 energy	 product	 is	 considered,	
superscript	“E”	denoting	the	energy	market	product	in	the	deterministic	formulation	is	
omitted	from	the	above	expressions	to	simplify	notation.

The	stochastic	optimization	problem	of	the	power	company	is	also	subject	to	the unit	
operating	constraints	considered	for	the	respective	deterministic	problems.	Therefore,	
constraints	8.11	through	8.48	(thermal	system)	as	well	as	8.23	through	8.27,	8.41,	8.42,	
8.49	through	8.63,	8.65	through	8.68,	and	8.81	through	8.83	(hydro	system)	must	be	also	
added	to	the	model	formulation.	In	these	constraints,	all	variables	except	for	the	com-
mitment	binary	ones	are	augmented	with	superscript	“ω,”	representing	their	realization	
in	scenario	ω		(second-stage	variables).	The	commitment	binary	variables	(yit,	zit,	uit,	....)	
remain	scenario-independent,	as	they	are	unique	for	all	scenario	realizations	(first-stage	
variables)	 (nonanticipativity)	 [49].	For	 consistency,	 in	 the	 stochastic	model	 the	above	
problem	 constraints	 are	 denoted	 as	 8.11′	 through	 8.48′	 (thermal	 system)	 and	 8.23′	
through	 8.27′,	 8.41′,	 8.42′,	 8.49′	 through	 8.63′,	 8.65′	 through	 8.68′,	 and	 8.81′	 through	
8.83′	(hydro	system).

Figure	8.14	represents	the	scenario	tree	for	the	aforementioned	two-stage	stochastic	
programming	problem.

8.4.2.3  Risk Modeling

In	this	paragraph,	the	risk	associated	with	the	profit	variability	is	explicitly	taken	into	
account	 in	 the	 problem	 formulation	 through	 the	 CVaR	 at	 the	 α-confidence	 level	
(α-CVaR).

As	already	described	in	Chapter	2,	 in	a	profit	maximization	problem	with	discrete	
probability	distribution,	α-CVaR	is	defined	as	the	expected	profit	of	the	(1	−	a)	⋅	100%	
worst	scenarios	(the	ones	with	lowest	profit).	This	risk	measure	can	be	easily	incorpo-
rated	within	an	optimization	problem	using	linear	terms	only	(no	further	binary	vari-
ables	are	needed).

First stage
commitment decisions

(uit, yit, zit, ...)

1

2

ω

Ω – 1

Ω

Second stage
dispatch schedule

( pω
it)

( p1
it)

( p2
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(pΩ
it 

–1)

(pΩ
it )

FIGURE 8.14 Scenario	tree.



8-36 Electric Power Systems

The	 risk-constrained	 formulation	 of	 the	 aforementioned	 stochastic	 optimization	
problem	is	as	follows	[35]:
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or,	equivalently,
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subject	to	problem	constraints	8.11′	through	8.48′	(thermal	system),	8.23′	through	8.27′,	
8.41′,	8.42′,	8.49′	through	8.63′,	8.65′	through	8.68′,	and	8.81′	through	8.83′	(hydro	sys-
tem),	linear	constraints	8.98	through	8.102	plus	the	following	ones	needed	for	the	linear	
formulation	of	the	CVaR:
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	 sω ω≥ ∀ ∈0 Ω 	 (8.108)

where	 α	∈	(0,1)	 is	 an	 input	 parameter	 denoting	 the	 confidence	 level,	 β	∈	[0,∞)	 is	 a	
weighting	factor	for	the	incorporation	of	risk	in	the	expected	profit	objective	function,	
η	 represents	 the	 Value-at-Risk	 (VaR),	 and	 sω	 is	 an	 auxiliary	 continuous	 nonnegative	
variable	defined	as	the	maximum	between	zero	and	the	difference	between	the	VaR	and	
the	profit	of	scenario	ω.

The	expected	profit	of	the	Producer	is	computed	as	follows:
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The	objective	 function	 to	be	maximized,	Equation	8.105	or,	equivalently,	Equation	
8.106,	consists	of	the	expected	profit	of	the	Producer	and	the	CVaR	of	the	profit	multi-
plied	by	the	weighting	parameter	β	∈	[0,∞).	In	fact,	this	weighting	parameter	enforces	
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the	trade-off	between	profit	and	risk;	the	higher	the	value	of	β,	the	more	risk-averse	the	
Producer.	In	the	case	that	β	=	0,	risk	is	not	considered	and	the	Producer	is	risk-neutral.

In	Section	8.5.2.2,	it	is	shown	how	the	variability	of	the	Producer	profit	can	be	signifi-
cantly	reduced	in	the	presence	of	forward	bilateral	contracts	with	the	end-consumers.

8.5  Numerical Application

In	this	section,	the	numerical	application	of	the	aforementioned	optimization	models	
is  presented.	 In	 Section	 8.5.1,	 the	 numerical	 application	 of	 the	 deterministic	 self-
scheduling	problem	already	described	 in	Sections	8.2	and	8.3	 is	presented,	whereas	
the	 respective	 numerical	 applications	 for	 the	 stochastic	 self-scheduling	 problem,	
already	discussed	in	Section	8.4,	is	presented	in	Section	8.5.2.

8.5.1  Deterministic Problem Application

In	this	section,	the	proposed	deterministic	optimization	model	for	the	solution	of	the	
hydrothermal	Producer	self-scheduling	problem	is	applied	to	the	daily	self-scheduling	
of	the	dominant	power	company	of	the	Greek	interconnected	power	system	in	both	
the	production	and	retail	sectors.	Currently,	this	power	company	owns	a	majority	of	
the	conventional	thermal	generating	units	and	the	total	hydroelectric	production.	The	
power	 company	 is	 considered	 to	 act	 as	 a	 price-maker	 Producer	 in	 the	 day-ahead	
energy	 and	 reserves	 markets	 and	 as	 a	 Retailer	 through	 forward	 bilateral	 contracts	
with	the	end-consumers.

For	the	sake	of	simplicity,	in	all	test	cases	presented	in	this	numerical	application,	
the	 fuel	 limitations	 of	 thermal	 generating	 units	 are	 relaxed	 (see	 Constraint	 8.43),	
whereas	convex	cost	functions	are	considered	for	all	thermal	units	(constraints	8.46	
and	8.47	are	disregarded).	In	addition,	no	prohibited	operating	zones	of	hydroplants	
are	 considered	 (see	 Constraints	 8.60	 and	 8.61)	 and	 no	 time	 delay	 between	 the	 dis-
charge	of	a	hydroplant	and	the	resulting	inflows	of	the	downstream	reservoir	is	taken	
into	account	(see Equation	8.65).

In	all	test	cases,	the	hydraulic	coupling	model	is	considered.	In	the	first	two	test	cases	
presented	in	Sections	8.5.1.2.1	and	8.5.1.2.2,	the	effect	of	the	variable	head	modeling	on	
the	 hydroplants	 self-scheduling	 is	 neglected.	 The	 variable	 head	 effect	 is	 examined	
through	an	indicative	test	case	presented	in	Section	8.5.1.2.3,	where	the	full	hydro	model	
is	adopted.

8.5.1.1  System and Units Data

In	this	case	study,	the	dominant	power	company	of	the	Greek	power	system	owns	30	
thermal	units	and	13	hydroplants,	including	2	pumped	storage	plants.	The	total	installed	
thermal	and	hydro	capacity	is	7404	and	2934	MW,	respectively.

A	summary	of	the	thermal	system	can	be	found	in	Table	8.5.	Table	8.6	presents	an	
overview	of	the	hydro	system	with	the	main	technoeconomic	data	of	hydroplants	[8].	
There	 are	 six	 river	 basins	 (A–F)	 and	 four	 blocks	 of	 cascaded	 hydroplants/reservoirs	
(A–D).	The	maximum	pumping	load	of	the	pumped	storage	plants	is	given	in	parenthe-
ses.	The	average	specific	consumption	for	all	hydroplants	is	computed	as	the	mean	value	



8-38 Electric Power Systems

of	the	respective	values	given	in	Reference	[8]	and	is	used	in	the	first	two	test	cases	where	
the	simplified	hydro	model	is	adopted.	The	forecast	net	water	inflows	for	all	reservoirs	
are	considered	to	be	constant	over	the	whole	scheduling	period,	whereas	the	minimum	
volume	of	water	stored	in	all	reservoirs	is	equal	to	zero.

The	 load	 demand	 and	 the	 system	 requirements	 in	 all	 types	 of	 reserves	 are	 typical	
curves	of	the	Greek	power	system	[53].	The	load	demand	curve	in	combination	with	the	
anticipated	competitors’	energy	offers	are	used	 for	 the	construction	of	 the	Producer’s	
hourly	 residual	 demand	 curves	 for	 energy.	 As	 already	 mentioned,	 these	 curves	 are	
	nonincreasing	and,	in	this	case	study,	consist	of	20	steps.	The	sum	of	the	competitors’	
energy	offer	quantities	at	each	hour	is	considered	to	be	constant	and	equal	to	2400	MW,	
whereas	 the	respective	competitors’	offer	prices	vary	 from	62.0	 to	100.0	€/MWh.	The	
residual	 demand	 curve	 for	 energy	 that	 the	 price-maker	 Producer	 faces	 in	 hour	 9	 is	
shown	in	Figure	8.15.	As	the	Producer	acts	also	as	a	price-maker	in	all	reserves	markets,	
the	hourly	residual	demand	curves	for	all	types	of	reserves	are	formulated	similarly,	on	
the	 basis	 of	 the	 respective	 competitors’	 reserves	 offers,	 and	 consist	 of	 5–8	 steps.	 The	
competitors’	offer	prices	for	all	reserves	types	vary	from	0.02	to	60	€/MWh.

TABLE 8.5 Thermal	System	Overview	(Deterministic	Case)

Unit	Type Number	of	Units
Installed	Capacity	

(MW)
Marginal	Cost	Range	

(€/MWh)
Start-up	Cost	Range	

(€/MWh)

Base	load	
(lignite-fired)

20 4770 29.0–33.8 16,200–87,000

Intermediate	load	
(CCGTs)

3 1404 54.0–61.5 11,300–33,000

Peak	load	(OCGTs,	
oil)

7 1230 82.5–108.0 1200–3700

Note:	 CCGT,	combine-cycle	gas	turbine;	OCGT,	open-cycle	gas	turbine.

TABLE 8.6 Hydro	System	Overview	(Deterministic	Case)

Hydroplant/
Reservoir River Pmax	(MW) Pmin	(MW) scav	[(m3/s)/MW] I	(m3/s) Vmax	(Hm3) Vini	(Hm3) Vfin	(Hm3)

#1 A 375 20 0.854 11.44 1158.6 447.0 441.9
#2 A 315	(220) 20 1.851 0.18 16.0 7.0 16.0
#3 A 108 20 2.914 0.13 10.0 5.0 7.9
#4 B 437 20 1.231 40.58 3320.9 1584.9 1588.4
#5 B 320 20 1.542 0.40 52.0 15.5 15.5
#6 B 150 20 3.168 0.04 11.9 1.5 0.0
#7 C 210 20 0.174 2.11 144.3 82.6 82.7
#8 C 300 20 1.749 4.65 344.8 181.7 182.1
#9 C 34 10 14.875 0.04 4.1 1.8 1.6
#10 D 375	(250) 20 1.083 12.80 563.0 500.0 492.0
#11 D 116 20 1.940 1.31 69.6 51.2 60.5
#12 E 64 10 0.517 0.28 46.2 10.8 9.2
#13 F 130 20 0.214 3.80 299.0 148.3 147.4
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In	the	case	 that	 the	hourly	system	load	demand/reserves	requirements	exceeds	 the	
total	amount	of	energy/reserves	offered	by	the	competitors,	the	quantity	of	the	first	step	
of	the	corresponding	hourly	residual	demand	curve	is	equal	to	the	excess	load	demand/
reserve	requirement	and	the	price	is	equal	to	the	price	cap	of	energy	or	reserves,	respec-
tively.	The	price	cap	for	energy	and	reserves	have	been	set	equal	to	150	and	100	€/MWh,	
respectively.

It	should	also	be	noted	that	base-load	and	peak-load	thermal	units	do	not	operate	in	
AGC	mode	(and	do	not	contribute	to	secondary	up/down	reserve),	whereas	hydro	units	
do	not	contribute	to	primary	up/down	reserve.

8.5.1.2  Test Results

In	this	section,	three	different	test	cases	are	examined.	In	the	first	case	(case	D.1),	the	
Producer	participates	in	the	day-ahead	energy	and	all	reserves	markets,	determining	
the	 degree	 of	 involvement	 in	 each	 market	 described	 in	 the	 introduction.	 In	 this	
case, the	effect	of	the	variable	head	modeling	on	the	hydroplants	self-scheduling	is	
neglected.

In	 the	 second	case	 (case	D.2),	 the	 Producer	 participates	 in	 all	 energy	 and	 reserves	
markets	acting	simultaneously	as	a	Retailer	that	has	agreed	to	deliver	CQt

E 	(MWh)	at	a	
contract	price	of	CPt

E	(€/MWh)	through	forward	bilateral	contracts.	The	procurement	
cost	for	reserves	is	also	taken	into	account,	according	to	Equation	8.92.

In	the	third	case	(case	D.3),	the	Producer	participates	in	the	day-ahead	energy	and	all	
reserves	markets,	whereas	the	variable	head	modeling	is	explicitly	taken	into	account	for	
several	hydroplants	and	its	effect	on	the	Producer	self-schedule	and	profits	is	thoroughly	
analyzed.

8.5.1.2.1  Energy and Reserves Markets

In	the	first	case,	the	Producer	participates	as	a	Stackelberg	monopolist	in	the	day-ahead	
energy	and	all	reserves	markets	facing	hourly	residual	demand	curves	for	all	market	
products.
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Figure	8.16	illustrates	(a)	the	hourly	system	load	demand,	(b)	the	hourly	power	gen-
eration	from	various	fuel	types,	and	(c)	the	net	hourly	Producer	generation	(total	genera-
tion	minus	total	pumping).

During	the	entire	24-h	scheduling	period,	the	net	Producer’s	generation	profile	fol-
lows	the	shape	of	the	hourly	system	load	demand	curve,	as	it	is	equal	to	the	system	load	
minus	 the	 constant	 hourly	 total	 amount	 of	 energy	 offered	 by	 the	 competitors’	 units	
(2400	MW)	(see	Figure	8.18).	In	other	words,	the	Producer	withholds	capacity	either	by	
holding	 certain	 intermediate-load	 units	 offline	 (hours	 3–9)	 or	 by	 enforcing	 them	 to	
operate	below	their	nominal	power	output,	so	that	the	energy	MCP	is	raised	to	the	price	
cap	(150	€/MWh)	(see	Figure	8.18).

It	should	be	noted	that	the	pumped	storage	plants	operate	in	pump	mode	during	the	
low-demand	period	(i.e.,	hours	1–8)	only.	In	these	hours,	base-load	and	intermediate-
load	units	(low-cost	and	medium-cost	units,	respectively)	increase	their	output	so	as	to	
maintain	 the	constant	difference	(=2400	MW)	between	the	net	Producer’s	generation	
and	the	hourly	system	load,	as	described	in	the	previous	paragraph	(see	Figure	8.16).	The	
water	stored	in	this	period	is	mainly	released	during	the	high-demand	period	(i.e.,	hours	
9–23),	resulting	in	an	increased	production	of	hydroplants	and	substituting	the	opera-
tion	of	the	high-cost	peak-load	units	in	these	hours.	In	fact,	despite	the	major	operation	
of	hydroplants	in	peak-load	hours,	these	units	also	operate	in	a	low-power	output	during	
low-demand	hours	(i.e.,	hours	1–7),	so	as	to	provide	secondary	up/down	reserve	in	these	
hours	and	 increase	profits.	Note	 that	all	peak-load	units	are	offline	during	 the	entire	
scheduling	period	in	this	case.
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FIGURE 8.16 Price-maker	optimal	generating	schedule	per	unit	type	(case	D.1).
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8.5.1.2.2  Energy Market, Reserves Markets, and Forward Bilateral Contracts

In	 the	 second	 case,	 the	 dominant	 Producer	 not	 only	 participates	 in	 the	 energy	 and	
reserves	markets	but	also	acts	as	a	Retailer	through	forward	bilateral	contracts	with	cus-
tomers.	In	this	case,	the	power	company’s	hourly	contracted	quantity	of	energy	is	consid-
ered	to	be	equal	to	the	hourly	system	load	demand;	that	is,	the	power	company	is	the	only	
energy	Retailer	 in	the	market.	For	the	sake	of	simplicity,	 the	forward	contract	price	 is	
considered	 to	 be	 constant	 during	 the	 scheduling	 horizon	 and	 equal	 to	 100	€/MWh,	
whereas	the	adoption	of	any	daily	contract	price	profile	is	straightforward.

The	aim	of	this	case	study	is	to	show	how	the	presence	of	forward	bilateral	contracts	as	
well	as	the	procurement	cost	of	the	associated	reserves	force	the	power	company	to	increase	
its	total	hourly	energy	production	as	well	as	its	hourly	contribution	in	all	types	of	reserves	
as	much	as	possible,	in	order	to	induce	lower	MCPs	(or	system	marginal	prices—SMPs)	for	
all	market	products	(given	that	 π ξ

t t
pr pr( ) 	is	a	stepwise	monotonically	nonincreasing	func-

tion	of	the	Producer	quota	of	each	market	product,	ξt
pr),	so	as	to	reduce	the	cost	of	closing	

its	short	position	in	the	day-ahead	market	and	maximize	its	total	profits.	Table	8.7	presents	
the	Producer’s	optimal	generating	schedule	per	unit	type	in	this	case.

TABLE 8.7 Optimal	Generating	Schedule	per	Unit	Type	(Case	D.2)

Hour
System	Load	

(MW)

Base-Load	Unit	
Production	

(MW)

Intermediate-Load	
Unit	Production	

(MW)

Peak-Load	Unit	
Production	

(MW)

Hydroplant	
Production	

(MW)
Total	Pumping	

(MW)

1 7737 4770 1350 0 21 0
2 7124 4770 1355 0 49 	−250
3 6736 4770 1300 0 0 	−470
4 6494 4770 1300 0 0 	−470
5 6379 4770 1350 0 11 	−470
6 6350 4770 1350 0 11 	−470
7 6371 4770 1350 0 21 	−470
8 7182 4770 1350 0 21 	−250
9 8124 4770 1364 164 26 0
10 8867 4770 1404 473 420 0
11 9109 4770 1404 482 653 0
12 9329 4770 1404 482 874 0
13 9485 4770 1404 482 1029 0
14 9565 4770 1404 482 1110 0
15 9489 4770 1404 482 1033 0
16 9207 4770 1404 482 751 0
17 8947 4770 1404 482 491 0
18 8868 4770 1404 482 412 0
19 8852 4770 1404 482 396 0
20 8704 4770 1395 303 436 0
21 8618 4770 1395 303 350 0
22 8699 4770 1395 303 431 0
23 8326 4770 1395 240 121 0
24 7889 4770 1350 0 21 0
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Figure	8.17	illustrates	(a)	the	hourly	system	load	demand,	(b)	the	optimal	generating	
schedule	 per	 unit	 type,	 and	 (c)	 the	 hourly	 net	 Producer	 generation	 (total	 generation	
minus	total	pumping).	The	difference	between	the	net	Producer	generation	and	the	sys-
tem	load	is	covered	by	the	competitors’	energy	offers	(see	Figure	8.18).

As	shown	in	Table	8.7	and	Figure	8.17,	 the	base-load	 lignite	units	operate	at	 their	
nominal	power	output	during	the	whole	scheduling	period,	whereas	the	intermediate-
load	units	are	fully	loaded	only	during	the	high-demand	hours	(i.e.,	hours	10–19).	In	
addition,	 the	 peak-load	 units	 are	 committed	 only	 during	 the	 peak-load	 hours	 (i.e.,	
9–23),	so	that	the	Producer	quota	increases	and,	subsequently,	a	significant	reduction	
in	the	energy	SMP	is	induced.	Similarly	with	case	D.1,	the	pumped	storage	plants	oper-
ate	in	pump	mode	during	the	low-demand	period	(i.e.,	hours	2–8)	only,	whereas	hydro-
plants	also	operate	at	a	 low-power	output	during	 low-demand	hours	(i.e.,	hours	1–2,	
5–9,	and	24),	so	as	to	have	the	capability	to	provide	secondary	up	reserve	in	these	hours	
and	increase	profits	(see	Figure	8.20).

Figures	8.19	and	8.20	illustrate	the	primary-up	and	secondary-up	reserve	contribu-
tion	of	the	Producer,	respectively.	Similar	to	the	energy	residual	demand	curve,	the	gap	
between	the	system	requirement	and	the	total	contribution	is	covered	by	the	competi-
tors’	reserve	offers.

Figures	8.17	and	8.18	illustrate	that,	with	the	exception	of	the	low-demand	hours	1–8	
and	24,	during	the	entire	scheduling	period,	the	net	Producer’s	generation	profile	fol-
lows	the	shape	of	the	hourly	system	load	demand	curve,	as	it	is	reduced	by	a	constant	
hourly	amount	of	energy	offered	by	the	competitors	(1800	MW).	The	resulting	MCP	of	
energy	is	remarkably	reduced	as	compared	to	that	in	case	D.1	and	remains	in	the	range	
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FIGURE 8.17 Price-maker	optimal	generating	schedule	per	unit	type	(case	D.2).
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of	64.0–68.0	€/MWh	during	the	entire	scheduling	period	(see	Figure	8.18),	thus	leading	
to	a	remarkable	decrease	in	the	cost	of	energy	supply	for	the	power	company.

A	 similar	 scheduling	 strategy	 is	 followed	 by	 the	 Producer	 for	 all	 types	 of	 reserves	
in order	to	 lead	all	reserves	clearing	prices	 to	the	 lowest	possible	value	(0.02	€/MWh).	
Figure	 8.19	 shows	 that,	 during	 low-demand	 hours,	 as	 intermediate-load	 units	 do	 not	
operate	at	their	maximum	power	output	(see	Tables	8.5	and	8.7),	they	can	contribute	to	
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primary-up	 reserve	 as	 much	 as	 needed	 in	 order	 to	 lead	 the	 respective	 MCP	 to	 0.02	€/
MWh.	In	the	same	way,	during	high-demand	hours,	peak-load	units	operate	below	their	
technical	 maximum	 and,	 thus,	 they	 can	 contribute	 to	 primary	 up	 reserve	 in	 order	 to	
maintain	the	primary-up	reserve	MCP	at	0.02	€/MWh.	Secondary-up	reserve	is	mainly	
contributed	by	hydro	units	(see	Figure	8.20)	and	the	respective	clearing	price	is	also	equal	
to	0.02	€/MWh	during	the	entire	scheduling	horizon.	Similar	results	have	been	observed	
for	the	tertiary	reserve	market.

The	explanation	of	the	above	scheduling	strategy	lies	in	the	respective	quota	of	the	
power	company	in	the	production	and	retail	sectors.	In	this	case	study,	the	power	com-
pany	controls	a	 significant	percentage	of	 the	 total	production	capacity	and	 the	entire	
(100%)	 retail	 sector	 (through	 its	 forward	 bilateral	 contracts).	 However,	 the	 Retailers	
cover	all	payments	to	the	Producers	for	energy	and	reserve	contribution.

Thus,	the	power	company,	being	the	only	Retailer	in	the	market,	aims	at	minimizing	the	
costs	of	the	retail	activities,	in	order	to	pay	less	to	the	competitors	for	their	contribution	in	
energy	and	 reserves.	When	 the	quota	of	 the	power	company	 in	 the	 retail	 sector	drops	
below	its	percentage	in	the	production	sector,	then	the	optimization	leads	the	energy	and	
reserve	prices	to	the	maximum	allowed	prices,	as	in	this	case	the	power	company’s	income	
from	the	production	sector	is	greater	than	its	payments	in	the	retail	sector.

Table	8.8	presents	the	Producer’s	total	daily	profit	in	each	of	the	first	two	cases	stud-
ied.	The	profit	is	considerably	lower	in	case	D.2	than	in	case	D.1	due	to	the	remarkable	
reduction	in	the	energy	MCP	(see	Figure	8.18)	and	the	fact	that	a	portion	of	Producer	
revenues	is	now	fixed	at	the	forward	contract	price	(100	€/MWh),	which	is	significantly	
lower	than	the	resulting	constant	MCP	of	case	D.1	(150	€/MWh).

Table	8.9	shows	the	size	of	the	resulting	MILP	model	and	the	execution	time	for	both	
cases,	 which	 includes	 generation	 of	 the	 model	 and	 the	 solution	 process.	 It	 should	 be	
noted	that	the	optimization	model	results	in	proven	optimal	solution	in	both	test	cases.	
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Also	note	that	in	case	D.2,	the	solution	algorithm	reaches	0.1%	of	the	optimal	solution	
relatively	quickly	(in	less	than	120	s),	whereas	it	takes	much	longer	(≈940	s)	to	locate	the	
proven	optimal	solution.

8.5.1.2.3  Variable Head Modeling

In	the	third	test	case,	the	Producer	participates	in	the	day-ahead	energy	and	all	reserves	
markets,	whereas	the	effect	of	the	variable	head	modeling	on	the	self-scheduling	program	
and	profits	of	several	hydroplants	are	examined.	As	already	mentioned,	the	head	varia-
tion	mainly	affects	the	daily	operation	of	hydroplants	with	small	reservoirs.	In	the	hydro	
subsystem	presented	in	Table	8.6,	only	hydroplants	#2,	#3,	#6,	and	#9	may	present	a	nota-
ble	variation	on	their	reservoir	volume	in	a	24-h	scheduling	period	due	to	their	small	size.	
Given	that	the	incorporation	of	the	variable	head	modeling	formulation	in	the	Producer	
optimization	problem	for	all	hydroplants	leads	to	a	considerable	increase	in	the	comput-
ing	time	due	to	the	additional	binary	variables	and	constraints	required,	for	the	sake	of	
simplicity	the	implementation	of	the	head-dependent	hydro	operation	is	limited	only	in	
the	above	hydroplants/reservoirs,	for	which	the	full	hydro	model	is	adopted.

For	this	purpose,	the	main	operating	data	of	these	hydroplants	are	modified	to	follow	
as	consistently	as	possible	the	real	hydroplant	operation,	as	illustrated	in	Figures	8.10	
and	8.11.	The	reservoirs	of	these	hydroplants	are	considered	to	be	discretized	in	three	
reservoir	volume	zones	(K	=	3),	each	with	a	distinct	specific	consumption,	volume	lim-
its,	and	power	output	limits	(under	AGC	also).	Table	8.10	presents	the	modified	techni-
cal	data	mainly	based	on	those	given	in	Reference	[8]	for	the	four	small	reservoirs	(#2,	
#3,	#6,	and	#9)	of	the	hydro	system.	The	remaining	hydroplants	with	large	reservoirs	are	
considered	to	operate	according	to	the	hydraulic	coupling.

To	better	illustrate	the	results	from	the	implementation	of	the	variable	head	model-
ing,	hydroplants	#2	and	#3	are	selected.	Similar	results	are	obtained	for	the	remaining	
small	hydroplants.

At	first,	we	consider	that	all	hydroplants	operate	under	the	hydraulic	coupling	model,	
as	 already	 discussed	 (case	 D.3.1).	 Figure	 8.21	 illustrates	 the	 trajectory	 of	 the	 water	
	content	and	the	associated	power	output	of	hydroplant	#3.	As	already	mentioned,	in	this	
case,	 no	 matter	 how	 high	 the	 head/water	 content	 of	 the	 associated	 reservoiris,	 the	

TABLE 8.8 Daily	Power	Company	Profits	(Deterministic	Case)

Cases Total	Profit	(€)

Case	D.1:	Energy	and	reserves	markets	 15,917,641
Case	D.2:	Energy	market,	reserves	markets,	and	

forward	bilateral	contracts
10,535,364

TABLE 8.9 Size	of	the	Mixed-Integer	Linear	Programming	Model—Execution	Times	
(Deterministic	Case)

Execution	Time	(s)

Number	of	
Equations

Number	of	
Variables

Number	of	Integer	
(Binary)	Variables Case	D.1 Case	D.2

47,517 42,337 19,309 	≈60 	≈940
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	specific	consumption	and	the	power	output	limits	of	hydroplant	#3	remain	unchanged	
for	their	whole	operating	range,	as	given	in	Table	8.6.	Therefore,	the	operation	of	hydro-
plant	#3	does	not	seem	to	follow	any	specific	rule	regarding	the	relationship	between	the	
stored	water	in	the	reservoir	and	the	production	schedule.

On	the	contrary,	when	the	variable	head	modeling	is	considered	for	all	small	hydro-
plants	 (case	 D.3.2),	 a	 distinct	 production	 strategy	 is	 followed.	 Figure	 8.22	 shows	 the	
strong	preference	of	hydroplant	#3	to	operate	during	the	hours	that	the	level	of	the	water	
content	is	either	in	the	medium	or	in	the	high	reservoir	volume	zone	(zones	2	and	3),	so	
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FIGURE 8.21 Power	output	of	hydroplant	#3	and	water	content	of	associated	reservoir	 (case	
D.3.1:	hydraulic	coupling	model).

TABLE 8.10 Modified	Hydroplant	Data	(Deterministic	Case—Variable	Head	Modeling)

Hydroplants/(River)	Subject	to	Variable	Head	Modeling

#2	(A) #3	(A) #6	(B) #9	(C)

Vini	(Hm3) 7.0 5.0 6.5 1.8
Vfin	(Hm3) 7.3 5.4 5.0 1.6
Qmin	(m3/s) 30 30 30 30
Qmax	(m3/s) 556 286 462 298

Re
se

rv
oi

r	V
ol

um
e	

Zo
ne

1 sc1	[(m3/s)/MW] 1.939 3.181 3.253 21.000
  Pmin,1	(MW) 15.5 9.4 9.2 1.4
  Pmax,1	(MW) 287.0 89.9 142.0 14.2
  Vmax,1	(Hm3) 5.33 3.33 4.0 1.4

2 sc2	[(m3/s)/MW] 1.851 2.914 3.168 14.875
  Pmin,2	(MW) 16.2 10.3 9.5 2.0
  Pmax,2	(MW) 300.0 98.2 145.8 20.0
  Vmax,2	(Hm3) 10.67 6.67 7.9 2.7

3 sc3	[(m3/s)/MW] 1.764 2.647 3.083 8.750
  Pmin,3	(MW) 17.0 11.3 9.7 3.4
  Pmax,3	(MW) 315.2 108.0 149.8 34.1
  Vmax,3	(Hm3) 16 10 11.9 4.1
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that	performance	curve	2	or	3	is	used.	As	a	result,	hydroplant	#3	takes	advantage	of	the	
lower	 specific	 consumption	 and	 the	 higher	 power	 output	 limits	 (see	 Table	 8.10)	 to	
increase	its	total	production.

It	should	be	noted	that,	in	both	cases,	the	continuous	decrease	in	the	stored	water	of	
hydroplant	#3	during	the	early	morning	hours	(hours	2–8)	is	due	to	the	pumping	opera-
tion	of	the	immediately	upstream	hydroplant	#2,	whereas	in	case	D.3.2	the	steep	increase	
in	the	water	volume	of	reservoir	#3	during	hours	10–16	is	due	to	the	intense	water	dis-
charge	and	associated	energy	production	of	the	upstream	hydroplant	#2.

Table	8.11	presents	the	total	daily	energy	production	of	both	hydroplants	as	well	as	the	
total	daily	Producer	profit	for	each	of	the	two	cases	studied	in	this	paragraph.	Although	
the	adoption	of	the	complex	full	hydro	model	 instead	of	the	simplified	one	(hydraulic	
coupling	model)	for	hydroplant	#2	and	#3	results	in	a	notable	increase	in	their	own	energy	
production	(and	profits	also,	as	the	resulting	MCP	remains	constant	at	150	€/MWh	for	
the	whole	scheduling	period	in	both	cases),	the	total	daily	Producer	profit	increases	only	
slightly	(by	0.05%).	This	is	due	to	the	fact	that	the	total	energy	production	of	these	hydro-
plants	comprises	a	small	portion	of	the	total	daily	energy	production	of	the	Producer.

In	case	D.3.1,	the	optimization	model	results	in	proven	optimal	solution	in	similar	
time	with	that	of	case	D.1,	whereas	in	case	D.3.2	the	optimality	gap	is	set	to	0.1%	and	it	
is	reached	in	about	55	min	of	computing	time.
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TABLE 8.11 Variable	Head	Modeling	Effect	(Deterministic	Case)

Hydraulic	
Coupling	Model

Full	Hydro	
Model Difference	(%)

Production	(MWh) Hydroplant	#2 1,939.0 1,992.6 2.76
Hydroplant	#3 1,091.1 1,180.1 8.16

Total	daily	producer	
profit	(€)

16,068,660 16,077,706 0.05
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8.5.2  Stochastic Problem Application

In	this	section,	the	proposed	two-stage	stochastic	programming	model	for	the	solution	
of	 the	hydrothermal	Producer	self-scheduling	problem	has	been	 implemented	 for	 the	
daily	 self-scheduling	 of	 a	 hypothetical	 price-maker	 hydrothermal	 Producer.	
Subsequently,	a	methodology	for	constructing	the	offer	curves	for	each	of	the	Producer	
generating	units	participating	in	the	day-ahead	electricity	market	is	presented.	For	the	
sake	 of	 simplicity,	 it	 is	 considered	 that	 this	 Producer	 participates	 in	 the	 day-ahead	
energy	market	only;	no reserves	markets	are	considered	in	this	case	study.	Additionally,	
this	Producer	is		considered	to	act	also	as	a	Retailer	through	forward	bilateral	contracts	
with	the	end-consumers.

Regarding	the	operating	constraints	of	the	generating	units,	the	same	assumptions	
with	the	respective	deterministic	model	are	made:	the	fuel	limitations	of	thermal	gener-
ating	units	are	relaxed	(see	Constraint	8.43),	whereas	convex	cost	functions	are	consid-
ered	for	all	 thermal	units	(constraints	8.46	and	8.47	are	disregarded).	 In	addition,	no	
prohibited	operating	zones	of	hydroplants	are	considered	(see	Constraints	8.60	and	8.61)	
and	no	time	delay	between	the	discharge	of	a	hydroplant	and	the	resulting	inflows	of	the	
downstream	reservoir	is	taken	into	account	(see	Equation	8.65).	Finally,	as	regards	the	
hydro	model,	 the	effect	of	 the	variable	head	modeling	 is	neglected	and	 the	hydraulic	
coupling	model	is	implemented.

8.5.2.1  System and Units Data

In	this	case	study,	the	hypothetical	price-maker	Producer	owns	five	thermal	units	and	
two	hydroplants.	The	total	installed	thermal	and	hydro	capacities	are	1664	and	812	MW,	
respectively.	This	Producer	is	considered	to	belong	to	the	Greek	power	system,	which	is	
a	medium-scale	power	system	with	an	average	yearly	load	of	about	6000	MW.	Therefore,	
the	 Producer’s	 market	 share	 allows	 it	 to	 act	 as	 a	 price-maker	 during	 particular	 time	
periods	affecting	the	resulting	MCPs	to	the	Producer’s	own	benefit.

Table	 8.12	 gives	 a	 summary	 of	 the	 Producer’s	 thermal	 system,	 whereas	 Table	 8.13	
presents	 an	 overview	 of	 the	 Producer’s	 hydro	 system	 with	 the	 main	 technoeconomic	
data	of	hydroplants.	Hydroplants	are	identical	to	hydroplant	#1	and	#4	of	the	determin-
istic	test	case	and	are	considered	to	be	located	in	different	river	basins.

The	system	load	demand	is	a	typical	curve	of	the	Greek	power	system	[53].	The	net	
system	load	curve	(total	system	load	minus	the	renewable	energy	sources	injection)	in	

TABLE 8.12 Thermal	System	Overview	(Stochastic	Case)

Unit	Type Number	of	Units
Installed	Capacity	

(MW)
Marginal	Cost	Range	

(€/MWh)
Start-up	Cost	Range	

(€/MWh)

Base	load	
(lignite-fired)

2 548 29.0–30.5 38,000–64,000

Intermediate	load	
(CCGTs)

2 928 54.0–60.0 11,000–32,000

Peak	load	(OCGTs,	
oil)

1 188 70.0–75.0 1700

Note:	 CCGT,	combine-cycle	gas	turbine;	OCGT,	open-cycle	gas	turbine.
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combination	with	the	competitors’	energy	offers	(which,	in	this	case	study,	are	scenario-
dependent)	 is	 used	 for	 the	 formulation	 of	 the	 Producer’s	 scenario-dependent	 hourly	
residual	demand	curves.	 It	 is	 assumed	 that	 the	competitor	units’	 availability	and	 the	
quantity	 of	 their	 own	 energy	 offers	 are	 considered	 to	 be	 deterministically	 known.	
Therefore,	only	uncertainties	in	the	competitors’	offer	prices	are	modeled	through	the	
definition	of	a	number	of	scenarios.	The	competitors’	energy	offers	are	discretized	in	20	
steps.	The	sum	of	the	competitors’	energy	offer	quantities	at	each	hour	is	considered	to	
be	constant	and	equal	to	9600	MW,	whereas	the	respective	nominal	competitors’	offer	
prices	vary	from	25.0	to	100.0	€/MWh.

To	consider	uncertainty	in	the	residual	demand	curves,	11	scenarios	are	formulated,	
each	representing	a	series	of	24-h	residual	demand	curves.	Each	series	results	from	an	
initial	series	of	24	residual	demand	curves,	where	the	nominal	competitors’	offer	prices	
are	multiplied	by	the	product	of	(a)	a	scaling	factor	ranging	from	0.75	to	1.25	and	(b)	a	
uniform	distribution	function	in	the	interval	[0.9,	1.1],	in	order	to	create	randomness.	
Table	8.14	presents	 the	11	scenarios	with	 their	associated	probabilities	of	occurrence.	
The	20	residual	demand	curves	that	the	Producer	faces	in	hour	5	are	shown	in	Figure 8.23.	

TABLE 8.13 Hydro	System	Overview	(Stochastic	Case)

Hydroplant/
Reservoir River

Pmax	
(MW)

Pmin	
(MW)

SCav[(m3/s)/
MW] I	(m3/s)

Vmax	
(Hm3)

Vini	
(Hm3)

Vfin	
(Hm3)

#1 A 375 20 0.854 11.44 1158.6 447.0 441.9
#2 B 437 20 1.231 40.58 3320.9 1584.9 1588.4

TABLE 8.14 Residual	Demand	Curves	Scenarios

Scenarios 1 2 3 4 5 6 7 8 9 10 11

Probability 0.08 0.09 0.09 0.09 0.1 0.1 0.1 0.09 0.09 0.09 0.08
Scaling	

factor
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FIGURE 8.23 Residual	demand	curve	realizations	for	all	scenarios	(t	=	5).



8-50 Electric Power Systems

Note	that	in	this	hour	all	residual	demand	curves	consist	of	16	steps,	due	to	the	signifi-
cantly	low	net	system	load	observed	in	that	hour.

In	 this	 case	 study,	 four	 different	 test	 cases	 are	 examined,	 regarding	 the	 volume	 of	
forward	bilateral	contracts	that	the	Producer	has	signed	with	the	end-consumers	(see	
Table	8.15)	and	how	these	contracts	affect	the	Producer’s	day-ahead	scheduling	strategy	
under	uncertainty.	Test	results	referring	to	case	S.4	(bilateral	contracts	covering	20%	of	
the	hourly	total	system	load)	are	discussed	in	the	following	section,	and	comparative	
results	from	all	test	cases	are	also	presented.

8.5.2.2  Test Results

As	already	discussed,	the	use	of	stochastic	programming	even	under	a	limited	number	
of	scenarios	usually	 leads	to	a	dramatic	 increase	 in	the	size	of	 the	problem	and	may	
even	 lead	 to	 intractability.	 In	 the	 present	 formulation,	 where	 the	 Producer	 acts	 as	 a	
price-maker	in	the	day-ahead	energy	market,	the	increase	in	the	size	of	the	stochastic	
model	(as	compared	with	the	respective	deterministic	one)	and	the	subsequent	diffi-
culty	in	solving	it,	is	mainly	due	to	the	existence	of	the	binary	variables	needed	for	the	
linearization	of	the	residual	demand	curves,	which	are	now	scenario	dependent	(wbt

ω ),	
whereas	the	commitment	decision	variables	(yit,	zit,	uit,	 . . .)	remain	scenario	indepen-
dent.	However,	the	number	of	continuous	variables	also	increases	in	proportion	to	the	
number	of	scenarios.	In	the	stochastic	price-taker	Producer	problem	the	number	of	the	
problem	binary	variables	remains	unchanged,	 irrespective	of	the	number	of	scenarios	
examined.

The	 solution	 of	 the	 two-stage	 stochastic	 programming	 model	 yields	 the	 optimal	
commitment	and	dispatch	schedule	for	each	of	the	Producer’s	generating	units	and	for	

TABLE 8.16 Producer	Unit	Commitment	Schedule	(Case	S.4)

Hour

Unit 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

#1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
#5 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
#6 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 0 0 0
#7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

TABLE 8.15 Forward	Bilateral	Contracts—Test	Cases

Test	Case
Contracted	Quantity	(MWh)	(Percentage	

of the Hourly System	Load	Demand) Contracted	Price	(€/MWh)

S.1 Without	bilateral	contracts —
S.2 5% 100
S.3 10%	 100
S.4 20% 100
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each	scenario.	Table	8.16	illustrates	the	optimal	commitment	schedule	for	all	Producer	
units	 for	 case	 S.4,	 which	 is	 unique,	 as	 the	 unit	 commitment	 variables	 are	 first-stage	
variables	and,	thus,	scenario-independent.	Unit	#1–5	correspond	to	the	thermal	units,	
whereas	unit	#6	and	#7	are	the	hydroplants.	Similarly	with	the	deterministic	case,	the	
peak-load	 unit	 (unit	 #5)	 and	 hydroplant	 #6	 are	 online	 during	 peak	 hours	 only,	 to	
increase	the	Producer’s	quota	and	increase	profits.	Note	that	hydroplant	#7	does	not	
start	during	the	entire	scheduling	period	to	store	water,	as	 its	 target	(final)	reservoir	
volume	is	significantly	higher	than	the	initial	one	(see	Table	8.13).

In	 this	 test	 case,	 the	 high	 volume	 of	 forward	 bilateral	 contracts	 incentivizes	 the	
Producer	to	reduce	significantly	the	MCP	to	its	own	benefit,	as	already	discussed	in	the	
deterministic	model	(see	Section	8.5.1.2.2).	Figure	8.24	illustrates	the	Producer’s	quota	
realizations	for	all	scenarios,	whereas	the	resulting	MCP	for	each	scenario	is	given	in	
Figure	8.25.	In	this	figure,	the	bold	line	denotes	the	average	MCP	over	all	scenarios.	It	is	
shown	that	during	low-demand	hours	(hours	1–8)	the	total	Producer’s	quota	exhibits	a	
considerable	variability	for	the	different	scenarios,	whereas	during	the	remaining	hours	
(hours	9–24)	the	Producer	is	rather	certain	about	the	total	amount	of	energy	to	be	sold.	
The	 explanation	 lies	 in	 the	 fact	 that	 during	 hours	 1–8,	 due	 to	 the	 low	 system	 load	
demand,	the	resulting	MCP	lies	in	the	range	of	the	variable	cost	of	the	Producer’s	CCGTs	
(see	Table	8.12).	Therefore,	the	scheduling	strategy	of	these	units	may	seriously	affect	the	
MCP.	On	the	contrary,	during	hours	9–24,	the	high	system	load	demand	leads	the	result-
ing	MCP	of	almost	all	scenarios	above	the	variable	cost	of	the	Producer’s	costliest	gener-
ating	unit	(unit	#5),	making	the	Producer	incapable	of	seriously	affecting	the	MCP.

As	already	discussed,	the	11	resulting	MCPs,	along	with	the	11	quantities	decided	by	
the	 Producer	 for	 each	 generating	 unit	 i,	 although	 corresponding	 to	 different	 market	
	outcomes,	constitute	the	offer	curve	that	the	generating	unit	should	submit	to	the	day-
ahead	market	for	each	hour.	Test	results	show	that	the	decisions	made	by	the	Producer	for	
each	hour,	 for	each	unit,	and	for	the	11	different	realizations	are	not	 independent,	but	
they	constitute	nondecreasing	hourly	offer	curves,	as	required	by	constraints	8.99	through	
8.102.	For	illustrative	purposes,	Figures	8.26	through	8.29	illustrate	the	optimal		quantities	
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decided	by	the	Producer	for	some	of	the	units	and	the	resulting	nondecreasing	stepwise	
offer	curves	to	be	submitted	to	the	day-ahead	energy	market.	Note	that	the	offer	curve	of	
	lignite	unit	#2	consists	of	a	single	step,	denoting	that	this	unit	is	totally	indifferent	of	the	
11 scenario	outcomes,	as	it	is	profitable	for	it	to	operate	at	its	technical	maximum,	regard-
less	of	the	resulting	MCP.

Figure	8.30	 illustrates	 the	average	Producer’s	quota	over	all	 scenarios	 for	each	 test	
case	studied.	It	is	concluded	that,	as	the	volume	of	the	contracted	quantity	increases,	the	
Producer’s	quota	also	increases,	to	cause	a	significant	reduction	in	the	MCP	and	in	the	
cost	of	energy	supply	(see	also	Section	8.5.1.2.2).	Figure	8.31	shows	how	the	average	MCP	
decreases	with	an	increase	in	the	Producer’s	quota.

Table	 8.17	 presents	 the	 statistical	 properties	 of	 the	 stochastic	 model,	 that	 is,	 the	
expected	profit	and	the	CVaR	for	the	four	test	cases	studied.	In	this	study,	the	CVaR	is	
computed	for	β	=	0.5	(moderate	risk	aversion)	and	α	=	0.8	(80%	confidence	level);	that	is,	
the	CVaR	denotes	the	expected	value	of	the	20%	scenarios	with	lowest	profit.	It	is	clear	
that,	as	the	volume	of	the	contracted	quantity	increases,	both	the	expected	profit	and	the	
CVaR	increase,	denoting	that	the	Producer’s	risk	exposure	to	the	uncertain	market	con-
ditions	(i.e.,	competitors’	energy	offers)	is	significantly	reduced	in	the	presence	of	for-
ward	bilateral	contracts.
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The	resulting	stochastic	MILP	model	includes	72,880	equations,	43,790	variables,	and	
10,040	binary	variables.	The	present	model	results	in	proven	optimal	solution	in	all	test	
cases	and	the	computing	time	required	to	obtain	this	solution	varies	from	1.5	(case	S.4)	
to	16	min	(case	S.1).

All	simulation	runs	for	the	deterministic	model	were	performed	on	a	2.8-GHz	Intel	
Quad	Core	processor	with	24	GB	of	RAM,	while	all	runs	for	the	stochastic	model	were	
performed	on	a	3.2-GHz	Intel	Quad	Core	processor	with	24	GB	of	RAM.	Both	machines	
run	64-bit	Windows,	while	the	CPLEX	12.0	solver	under	GAMS	23.3	[37]	was	used	for	
all	simulation	tests.

8.6  Conclusions

This	chapter	presented	a	detailed	MILP	formulation	for	the	solution	of	the	short-term	self-
scheduling	problem	of	an	electricity	Producer	with	thermal	and	hydro	generating	units.	
Different	optimization	models	regarding	the	role	of	the	Producer	in	the	electricity	market	
as	well	as	the	thermal	and	hydro	systems	operation	are	analytically	presented.	Uncertainty	
in	market	conditions	is	also	considered	under	a	two-stage	stochastic	programming	frame-
work,	whereas	the	CVaR	metric	accounting	for	risk	management	is	also	modeled.
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Two	different	numerical	applications	are	presented.	First,	the	Producer	is	considered	
to	have	deterministic	knowledge	of	the	market	conditions.	In	this	case,	the	hydrother-
mal	 Producer	 acts	 as	 a	 price-maker	 in	 all	 day-ahead	 markets	 (energy	 and	 reserves),	
while	 also	 acting	 as	 a	 Retailer,	 through	 forward	 bilateral	 contracts	 with	 the	 end-	
consumers.	 Therefore,	 the	 Producer	 is	 considered	 to	 set	 up	 a	 power	 company	 with	 a	
dominant	role	in	both	the	production	and	retail	sectors	of	an	electricity	market.	The pro-
posed	model	provides	a	dominant	power	company	with	a	useful	tool	to		determine opti-
mally	its	degree	of	involvement	in	each	day-ahead	market	in	order	to	maximize	its	total	
benefit.	Numerical	results	show	that	in	the	case	that	the	power		company	is	involved	in	
the	production	sector	only,	its	dominant	position	permits	the	manipulation	of	the	day-
ahead	energy	and	reserves	markets,	leading	the	day-ahead	clearing prices	for	all	market	
products	to	the	respective	price	caps	and	maximizing	its	own profits.	On	the	contrary,	
the	power	company’s	incentive	to	exercise	market	power and	manipulate	the	short-term	
electricity	markets	is	significantly	reduced	by the	presence	of	forward	bilateral	contracts	
with	the	end-consumers	and	the		procurement	cost	of	reserves.	The	effect	of	the	variable	
head	modeling	in	the	self-scheduling	and	profits	of	the	Producer	hydroplants	is	exam-
ined	through	an		illustrative	test	case.

In	the	second	case,	the	Producer	(acting	also	as	a	Retailer)	models	the	market	uncer-
tainty	through	stochastic	residual	demand	curves	for	the	day-ahead	energy	market	only,	
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TABLE 8.17 Statistical	Properties	of	the	Stochastic	Model

Test	Case Expected	Profit	(103	€) CVaR	(α	=	0.8,	β	=	0.5)	(103	€)

S.1 1308.8 696.1
S.2 1451.0 1014.6
S.3 1600.6 1333.4
S.4 1974.8 1964.9
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formulating	a	two-stage	stochastic	programming	problem.	The	solution	of	the	stochas-
tic	problem	provides	the	optimal	hourly	offer	curves	for	each	Producer’s	generating	unit	
to	be	submitted	to	the	day-ahead	energy	market.	Test	results	show	that	the	Producer’s	
risk	exposure	to	the	uncertain	market	conditions	is	significantly	reduced	in	the	presence	
of	forward	bilateral	contracts.

8.7  List of Symbols

Sets

b	(Bpr)	 Index	(set)	of	steps	of	the	residual	demand	curve	of	market	product	pr
f	(Fi)	 Index	(set)	of	steps	of	the	marginal	cost	function	of	thermal	unit	i
h	( j)	 Index	(set)	of	pumped	storage	plants	(B	⊆	J)
i	(I)		 Index	(set)	of	thermal	units	and	hydroplants
j	(J)	 Index	(set)	of	hydroplants	(J	⊆	I)
ju	(JU)	 	Index	(set)	of	hydroplants/reservoirs	immediately	upstream	of	hydroplant/

reservoir	j
k	(K)	 Index	(set)	of	water	volume	zone	of	hydroplant/reservoir	j
l	(L)	 	Index	(set)	of	unit	start-up	types	L	=	{h,	w,	c},	where	h	represents	hot,	w	warm,	

and	c	cold	start-up
m	(M)	 	Index	(set)	of	reserve	types	M	=	{1+,	1−,	2+,	2−,	3},	where	m	=	1+	represents	

primary	up,	m	=	1−	primary	down,	m	=	2+	secondary	up,	m	=	2−	secondary	
down,	and	m	=	3	tertiary	(spinning:	3S	and	nonspinning:	3NS)

n	(Nh)	 Index	(set)	of	the	units	of	pumped	storage	plant	h
pr	(PR)	 Index	(set)	of	market	products,	where	E	represents	energy	and	m	reserves
s	(Si)	 Index	(set)	of	steps	of	the	soak	process	of	thermal	unit	i
t	(T)	 Index	(set)	of	hours	of	the	scheduling	horizon
T		-	 Planning	horizon	extended	to	the	past	(set)
T	+	 Planning	horizon	extended	to	the	future	(set)
z	(Z)	 Index	(set)	of	the	permissible	operating	zones	of	hydroplant	j
ω	(Ω)	 Index	(set)	of	scenarios

Functions

π ξ
t t
pr pr( )	 	Residual	demand	curve	of	market	product	pr	in	hour	t,	expressed	as	a	stepwise	

monotonically	nonincreasing	function	that	represents	the	MCP	as	a	function	
of	the	Producer	quota	ξt

pr

cit	(pit)	 Total	production	cost	of	thermal	unit	i	in	hour	t	at	level	pit	(in	€/h)

Parameters

λt
pr 	 forecast	clearing	price	of	market	product	pr	in	hour	t	(in	€/MWh)

≠
bt
pr 	 	Price	of	step	b	of	the	residual	demand	curve	of	market	product	pr	in	hour	t	

(in	€/MWh)



8-58 Electric Power Systems

Cif	 	Marginal	cost	of	step	f	of	thermal	unit	i	marginal	cost	function	(in	€/MWh)
CQt

pr 	 	Forward	contract	quantity	of	market	product	pr	in	hour	t	(in	MWh)
CPt

pr	 	Forward	contract	price	of	market	product	pr	in	hour	t	(in	€/MWh)
Dt	 	System	load	demand	in	hour	t	(in	MW)
D

bt
pr 	 	Size	of	step	b	of	the	residual	demand	curve	of	market	product	pr	in	hour	

t (in	MW)
Dbt

pr,min	 	Summation	of	power	blocks	from	step	1	to	step	b	−	1	of	the	residual	demand	
curve	of	market	product	pr	in	hour	t	(in	MW)	(D tt1 0pr,min ,= ∀ ∈ T)

DTi	 	Minimum	down	time	of	unit	i	(in	h)
Eif	 	Size	of	step	f	of	thermal	unit	i	marginal	cost	function	(in	MW)
Ej

max	 	Maximum	energy	production	of	hydroplant	j	during	the	scheduling	period	
(in	MWh)

Ej
min 	 	Minimum	energy	production	of	hydroplant	j	during	the	scheduling	period	

(in	MWh)
eh

A	 	Pumping	efficiency	of	pumped	storage	plant	h
Fi 	 	Maximum	energy	production	of	unit	i	during	the	scheduling	period	due	to	

fuel	limitations	(in	MWh)
Ijt	 	Forecast	net	water	inflows	in	reservoir	j	in	hour	t	(in	m3/s)
M	 	Conversion	factor	equal	to	0.0036	(in	Hm3s/m3h)
NLCi	 	No-load	cost	of	unit	i	(for	1	h	operation)	(in	€/h)
PA h

n
, 	 	Constant	pumping	load	of	unit	n	of	pumped	storage	plant	h	(in	MW)

Pi
max	 	Maximum	power	output	of	thermal	unit/hydroplant	i	(in	MW)

Pi
AGCmin, 	 	Maximum	power	output	of	thermal	unit/hydroplant	i	while	operating	under	

AGC	(in	MW)
Pi

min 	 	Minimum	power	output	of	thermal	unit/hydroplant	i	(in	MW)
Pi

AGCmin, 	 	Minimum	power	output	of	thermal	unit/hydroplant	i	while	operating	under	
AGC	(in	MW)

Pi s,
,soak 	 	Power	output	of	unit	i	corresponding	to	the	sth	interval	of	the	soak	phase	

under	type	ℓ	start-up	(in	MW)
Pi

soak 	 	Fixed	power	output	of	unit	i	while	in	the	soak	phase	(in	MW)
Pi

syn 	 	Synchronization	load	of	unit	i	(in	MW)
Pj

kmax, 	 	Maximum	power	output	of	hydroplant	j	while	operating	in	reservoir	volume	
zone	k	(in	MW)

Pj
AGC kmax, , 	 	Maximum	 power	 output	 of	 hydroplant	 j	 while	 operating	 under	 AGC	 in	

reservoir	volume	zone	k	(in	MW)
Pj

kmin, 	 	Minimum	power	output	of	hydroplant	j	while	operating	in	reservoir	volume	
zone	k	(in	MW)

Pj
AGC kmin, , 	 	Minimum	 power	 output	 of	 hydroplant	 j	 while	 operating	 under	 AGC	 in	

reservoir	volume	zone	k	(in	MW)
Pj

zmax, 	 	Upper	bound	of	the	zth	permissible	operating	zone	of	hydroplant	j (in MW)
Pj

zmin, 	 	Lower	bound	of	the	zth	permissible	operating	zone	of	hydroplant	j	(in	MW)
probω	 	Probability	of	scenario	ω
Qj

max 	 	Maximum	water	discharge	of	hydroplant	j	(in	m3/s)
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Qj
AGCmax, 	 	Maximum	 water	 discharge	 of	 hydroplant	 j	 while	 operating	 under	 AGC	

(in m3/s)
Qj

min	 	Minimum	water	discharge	of	hydroplant	j	(in	m3/s)
Qj

AGCmin, 	 	Minimum	 water	 discharge	 of	 hydroplant	 j	 while	 operating	 under	 AGC	
(in m3/s)

Ri
m 	 	Maximum	 contribution	 of	 thermal	 unit/hydroplant	 i	 in	 reserve	 type	 m	

(in MW)
RDi	 	Ramp-down	rate	of	thermal	unit/hydroplant	i	(in	MW/min)
RDi

AGC 	 	Ramp-down	rate	of	thermal	unit/hydroplant	i	while	operating	under	AGC	
(in	MW/min)

RRt
m	 	System	requirement	in	reserve	type	m	during	hour	t	(in	MW)

RUi	 	Ramp-up	rate	of	thermal	unit/hydroplant	i	(in	MW/min)
RUi

AGC 	 	ramp-up	 rate	 of	 thermal	 unit/hydroplant	 i	 while	 operating	 under	 AGC	
(in MW/min)

sch
A 	 	Average	specific	consumption	of	pumped	storage	plant	h	while	operating	in	

pump	mode	[in	(m3/s)/MW]
sc j

av 	 	Average	specific	consumption	of	hydroplant	j	[in	(m3/s)/MW]
sc j

k 	 	Specific	consumption	of	hydroplant	 j	while	operating	 in	reservoir	volume	
zone	k	[in	(m3/s)/MW]

SDCi	 	Shutdown	cost	of	thermal	unit	i	(in	€)
SUCi

	 	Start-up	cost	of	thermal	unit	i	from	type	ℓ	standby	until	load	with	synchro-
nization	(in	€)

Ti
 	 	Time	off-load	before	going	 into	 longer	 standby	conditions	 (ℓ	=	w	 :	hot	 to	

warm,	ℓ	=	c	:	hot	to	cold)	of	unit	i	(in	h)
Ti

des 	 	Time	from	technical	minimum	power	output	to	desynchronization	of	ther-
mal	unit	i	(in	h)

Ti
syn, 	 	Time	to	synchronize	unit	i	under	type	ℓ	start-up	(in	h)

Ti
soak,	 	Soak	time	of	unit	i	under	type	ℓ	start-up	(in	h)

UTi	 	Minimum	up	time	of	unit	i	(in	h)
Vj

ini	 	Initial	volume	of	water	stored	in	reservoir	j	at	the	beginning	of	the	scheduling	
horizon	(in	Hm3)

Vj
fin 	 	Final	volume	of	water	stored	in	reservoir	j	at	the	end	of	the	scheduling	hori-

zon	(in	Hm3)
Vj

max	 	Maximum	volume	of	water	stored	in	reservoir	j	(in	Hm3)
Vj

kmax, 	 	Maximum	volume	of	water	stored	for	zone	k	of	reservoir	j	(in	Hm3)

Variables

xit	 	Vector	of	the	continuous	and	the	binary	decision	variables	associated	with	
the	operation	of	unit	i	during	hour	t

Continuous Variables
ξt

pr	 	Producer	quota	of	market	product	pr	(summation	of	power	output	or	contribu-
tion	in	reserves	of	the	Producer	thermal	units/hydroplants)	in	hour	t	(in	MW)
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d
bt
pr 	 	portion	of	 step	b	of	 the	residual	demand	curve	of	market	product	pr	 that	

corresponds	to	the	quantity	accepted	by	the	ISO	in	hour	t	(in	MW)
eift	 	Portion	 of	 step	 f	 of	 the	 ith	 unit’s	 marginal	 cost	 function	 loaded	 in	 hour	

t (in MW)
pit	 	Power	output	of	unit	i	accepted	by	the	ISO	in	hour	t	in	the	day-ahead	energy	

auction	(in	MW)
pit

des 	 	Power	output	of	thermal	unit	i	during	the	desynchronization	phase	in	hour	
t	(in	MW)

pit
soak	 	Power	output	of	thermal	unit	i	during	the	soak	phase	in	hour	t	(in	MW)

pht
A 	 	Pumping	load	of	pumped	storage	plant	h	in	hour	t	(in	MW)

qjt	 	Total	water	discharge	of	hydroplant	j	in	hour	t	(in	m3/s)
q jt
δ 	 	Portion	 of	 water	 discharge	 in	 excess	 of	 the	 minimum	 water	 discharge	 of	

hydroplant	j	in	hour	t	(in	m3/s)
qht

A 	 	Water	flow	from	the	lower	to	the	upper	reservoir	of	a	pumped	storage	plant	
h	when	operating	in	pump	mode	in	hour	t	(in	m3/s)

rit
m 	 	Contribution	of	 thermal	unit/hydroplant	 i	 in	 reserve	 type	m	during	hour	

t (in	MW)
spjt	 	Spillage	over	reservoir	j	during	hour	t	(in	m3/s)
	vjt	 	Volume	of	water	stored	in	reservoir	j	at	the	end	of	hour	t	(in	Hm3)

Binary Variables
g

ht
n 	 	Binary	variable	that	is	equal	to	1	if	unit	n	of	pumped	storage	plant	h	 is	in	

pump	mode	in	hour	t
uit	 	Binary	variable	that	is	equal	to	1	if	thermal	unit/hydroplant	i	is	committed	

during	hour	t
uit

AGC	 	Binary	variable	that	is	equal	to	1	if	thermal	unit/hydroplant	i	operates	under	
AGC	and	provides	secondary	reserve	during	hour	t

uit
n 	 	Binary	variable	that	is	equal	to	1	if	unit	i	is	in	operating	phase	n	during	hour	

t,	 where	 n = syn:	 synchronization,	 n = soak:	 soak,	 n = disp:	 dispatchable,	
n = des:	desynchronization

ujt
z 	 	Binary	variable	that	is	equal	to	1	if	hydroplant	j	operates	in	permissible	zone	

z	during	hour	t
pr
bt

w 	 	Binary	variable	that	is	equal	to	1	if	step	b	is	the	last	step	needed	to	obtain	
Producer	quota	ξt

pr	or	market	product	pr	in	hour	t
x jt

k 	 	Binary	 variable	 used	 for	 the	 discretization	 of	 the	 performance	 curves	 of	
hydroplant	j	during	hour	t

yit
 	 	Binary	variable	that	 is	equal	 to	1	 if	a	 type	ℓ	 start-up	of	thermal	unit	 i	 is	

initiated	during	hour	t
yit	 	Binary	variable	that	is	equal	to	1	if	thermal	unit/hydroplant	i	is	started	dur-

ing	hour	t
zit	 	Binary	variable	that	is	equal	to	1	if	thermal	unit/hydroplant	i	is	shut	down	

during	hour	t
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All	 continuous	 and	 binary	 variables,	 if	 augmented	 with	 superscript	 “ω,”	 represent	
their	realization	in	scenario	ω.

Appendix A8.1: Modeling of Intertemporal Constraints

Intertemporal	constraints,	8.11,	8.13,	8.15,	8.18,	8.23,	and	8.24,	invoking	the	binary	vari-
ables	related	to	the	unit	commitment	status	(e.g.,	yit,	zit,	uit)	are	“backward	looking,”	that	
is,	the	binary	variables	within	the	summations	that	appear	on	one	side	of	the	constraints	
refer	to	the	past	of	the	time	interval	where	the	binary	variable	on	the	other	side	of	the	
constraint	is	calculated.	The	specification	of	the	initial	conditions	requires	the	extension	
of	the	planning	horizon	to	the	past	(negative	time).	The	scheduling	horizon	extended	to	
the	past	is	as	follows:

	 T T T T Text− − −= ∪ = −{ } ∪ { }, , , , 0 1 	

where	T	=	24	h	for	daily	scheduling,	and	T−	is	a	large	number	of	hours	in	the	past	that	
satisfy	the	condition

	
T T

i i
c− > { }max

In	our	simulations,	T−	=	100	h,	which	is	on	the	safe	side	(typical	reservation	time	for	
cold	start	of	lignite-fired	units	is	3	days	or	72	h).

The	extension	of	the	planning	horizon	to	the	negative	time	axis	provides	a	natural	
and	easy	way	to	introduce	initial	conditions,	without	increasing	the	number	of	problem	
binary	variables,	as	all	problem	variables	are	known	for	t	∈	Text−.	By	allowing	some	of	
the	binary	variables	that	refer	to	the	past	to	be	determined	through	the	problem	con-
straints,	 the	 specification	 of	 the	 initial	 conditions	 may	 be	 further	 simplified	 at	 the	
expense	of	a	small	increase	in	the	number	of	variables.

Suppose,	for	example,	that,	at	t	=	0,	lignite	unit	#1	has	already	been	online	for	3	h,	fol-
lowing	a	warm	start-up.	The	only	initial	conditions	that	are	required	are

	 y t y tit
w

it= = −{ } = = −{ }1 2 1 2for and for

Constraints	8.13	through	8.27	will	then	ensure	that	the	unit	will	begin	the	day	at	the	
first	step	of	its	soak	sequence	and	will	remain	online	at	least	until	hour	5,	when	the	unit’s	
minimum	up	time	constraint	is	satisfied,	according	to	the	unit’s	data	in	Table	8.2	(the	
unit’s	time	to	synchronize	after	a	warm	start-up	is	3	h,	soak	duration	is	3	h,	and	mini-
mum	up	time	is	8	h).	Additional	initial	conditions,	such	as	 { },u tit

wsyn for= − ≤ ≤1 2 0 	or	
{ }u tit = − ≤ ≤1 2 5for ,	may	also	be	specified,	but	are	not	necessary.

Intertemporal	constraints	related	to	unit	desynchronization,	8.21,	8.22,	and	8.40,	are	
forward-looking	and	require	the	extension	of	the	planning	horizon	to	the	future,	as	time	
index	“τ”	related	to	the	summations	in	constraints	8.21	and	8.22	as	well	as	time	index	
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“ ”t Ti+ des 	in	constraint	8.40	may	refer	to	hours	beyond	the	T	planning	horizon.	The	plan-
ning	horizon	extended	to	the	future	is	defined	as	follows:

	 T T T T T T T+ + += ∪ = { } ∪ + +{ }ext 1 1, , , , 

where	 T T
i i

+ = max{ }des 	and	T	=	24	h	for	daily	scheduling.
The	 extension	 of	 the	 planning	 horizon	 to	 the	 future	 is	 a	 natural	 and	 easy	 way	 to	

introduce	final	conditions.
From	constraints	8.21,	8.22,	and	8.40,	it	is	noted	that	future	values	of	only	the	unit	

shutdown	binary	variables,	zit,	are	needed	in	the	model.	In	the	model	implementation,	
the	time	domain	of	definition	of	the	unit	shutdown	variables,	zit,	is	extended	to	include	
future	time	intervals	(t	∈	Text+).	As	the	time	to	desynchronize,	Ti

des ,	of	thermal	units	is	
small	and	the	extension	of	the	time	horizon	to	the	future	depends	on	the	maximum	time	
to	desynchronize,	only	a	few	additional	binary	variables,	zit,	i	∈	I ,t	∈	Text+,	are	added	to	
the	model.	 The	 future	values	 of	 the	 shutdown	 variables	 (zit,	 i	∈	I  ,t	∈	Text+)	 are	 deter-
mined	by	the	model	solution.
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9.1  Introduction

Committing	generation	units	ahead	of	time	is	necessary	to	manage	the	risk	associated	
with	 operating	 the	 power	 system	 to	 serve	 load	 under	 uncertain	 future	 conditions.	
Optimization	of	unit	commitment	(UC)	decisions	is,	however,	not	an	easy	task	as	it	must	
take	into	account	all	possible	reasons	for	bringing	units	online	or	shutting	them	down	
[1].	 After	 UC	 has	 been	 decided	 upon,	 an	 economic	 dispatch	 (ED)	 is	 then	 performed,	
distributing	 expected	 load	 between	 the	 committed	 units	 such	 that	 overall	 operating	
costs	are	lowest	while	still	providing	necessary	reserves	in	addition	to	demand.	These	
alterations	can	be	applied	to	controllable	generation	and	resources,	and	in	some	cases	
controllable	loads.	A	forecast	of	the	demand,	which	is	periodically	updated	but	still	con-
tains	some	uncertainty,	is	central	to	the	activity	of	UC–ED.	UC–ED	algorithms	are	used	
by	operators	of	power	plants	and	power	systems	market	operators.

In	this	chapter,	wind	generation	is	viewed	as	an	unscheduled	resource	with	insignifi-
cant	operating	costs	that	acts	to	lower	electricity	demand.	A	forecast	of	wind	generation,	
therefore,	also	becomes	necessary	once	wind	offsets	a	significant	portion	of	demand	in	
power	 systems.	 If	 wind	 power	 reduces	 demand	 significantly,	 the	 “minimum	 load”	
	problem	is	encountered:	some	conventional	generating	units	have	minimum	generation	
	levels	that	cannot	be	violated	without	complication	and/or	unacceptable	loss	of		efficiency.	
For	 example,	 some	 units	 generate	 electricity	 as	 a	 coproduct	 while	 supplying	 heat	 for	
industry	or	residential	use.	Nuclear	generators	require	a	long	time	to	safely	shutdown	or	
start,	and	are	usually	operated	at	a	constant	output	as	“base	loads.”

Unit	 commitment	decisions	are	currently	 reassessed	 typically	once	or	 twice	a	day,	
whereas	generation	dispatch	is	carried	out	throughout	the	day.	With	the	reasonable	pre-
dictability	of	system	load,	intraday	calculations	for	unit	commitment	are,	in	principle,	
only	 necessary	 when	 unexpected,	 significant	 changes	 occur	 in	 generation	 (e.g.,	 plant	
outages)	or	demand.	This	changes	when	 large	amounts	of	wind	power	must	be	taken	
into	account,	as	its	variations	are	more	difficult	to	predict.

The	emergence	of	international	markets	and	the	growth	of	wind	power	have	compli-
cated	 the	optimization	of	UC–ED	 in	 the	 sense	 that	more	variables	and	uncertainties	
(i.e.,	 market	 prices,	 wind	 power	 forecasts)	 must	 be	 taken	 into	 account.	 In	 liberalized	
markets,	 the	 generation	 owners	 are	 responsible	 for	 supplying	 their	 own	 customers	
(i.e., long-term	contracts	and	short-term	trading	agreements)	and	for	providing	certain	
ancillary	services	such	as	reserve	and	regulating	power	to	the	transmission	system	oper-
ator.	 Each	 individual	 owner	 therefore	 optimizes	 the	 UC–ED	 of	 the	 generation	 units	
under	 its	 control,	 taking	 the	 market	 price	 into	 account.	 For	 existing	 systems,	 ideal	
	markets,	in	principle,	lead	to	the	same	outcome	regarding	the	scheduling	of	generation	
as	 would	 have	 been	 the	 case	 with	 central	 optimization.	 It	 is,	 therefore,	 still	 highly	
	relevant	to	formulate	and	solve	the	central	optimization	problem	[2].	The	issue	of	market	
effects	will	be	revisited	in	Section	9.4,	when	stating	the	central	assumptions	made	in	this	
chapter’s	approach	to	solving	the	problem.

To	 realistically	 explore	 issues	 related	 to	 the	 integration	 of	 wind	 power,	 a	 UC–ED	
problem	formulation	should	include	models	for	wind	power,	interconnecting	capacity	to	
neighboring	power	systems,	and	energy	storage	facilities.	For	some	systems,	it	can	also	
be	important	to	include	appropriate	models	of	combined	heat	and	power	(CHP)	units,	
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which	constrain	 the	power	 system	by	coupling	 it	with	residential	and	 industrial	heat	
demand.	It	is	also	important	to	acknowledge	that	the	commitment	of	units	must	cope	in	
reality	with	generation	unit	outages,	which	may	be	either	planned	or	accidental.	Sections	
9.2	 and	 9.3	 are	 dedicated	 to	 discussing	 the	 features	 of	 realistic	 generation,	 load,	 and	
international	trade	models.

The	approach	to	unit	commitment	discussed	in	this	chapter	involves	some	simplified	
assumptions	and	emphasizes	the	effects	of	wind	power.	Simulations	are	performed	using	
a	 commercial	 software	 package	 (PwrSym4)	 that	 can	 represent	 multiple	 areas,	 works	
from	a	database	of	fuel	costs	and	emissions	by	technology,	and	accepts	input	data	for	
load	and	heat	demand.	It	is	a	chronological	simulation	that	conducts	a	“rolling	window”	
optimization,	making	adjustments	over	 several	 time	 scales,	 and	accounting	 for	 ramp	
rates	and	minimum	up	and	down	times.	It	can	include	the	effects	of	forced	outages	using	
a	Monte	Carlo	randomization.	A	schematic	overview	of	this	process	is	the	main	subject	
of	Section	9.5.	With	the	knowledge	of	the	previous	sections	in	hand,	in	Section	9.6	the	
outcomes	of	a	case	study	on	large	wind	power	penetration	scenarios	in	the	Netherlands	
and	Germany	and	their	effect	on	the	Northwest	European	system	are	examined.

9.2  Modeling Input Data

9.2.1  Load Time Series

System	 load	 is	 the	 most	 crucial	 input	 component	 of	 a	 unit	 commitment	 study.	 The	
	difference	between	its	peaks	and	values	along	with	its	minimum	and	maximum	values	
provide	a	condensed	signature	of	any	power	system,	and	hold	a	clue	to	the	composition	
of	its	current	generation	mix.	The	character	of	daily	and	weekly	load	patterns	relative	to	
that	of	renewable	resources	must	be	retained	to	properly	produce	realistic	unit	commit-
ment	 schedules.	 For	 unit	 commitment,	 aggregate	 loads	 are	 being	 considered,	 and	 its	
forecast	 can	 be	 viewed	 as	 being	 perfect.	 Cooperation	 with	 a	 transmission	 system	
	operator	to	obtain	data	is	ideal;	such	entities	have	historically	and	to	date	usually	still	log	
the	output	of	major	generators	supplying	loads.	For	studies	of	future	years,	 it	 is	often	
assumed	 that	 the	 load	 pattern	 can	 be	 scaled	 to	 reflect	 a	 chosen	 rate	 of	 growth,	 even	
though	 this	 assumption	 does	 not	 take	 into	 account	 possible,	 but	 uncertain	 develop-
ments	like	growth	of	the	use	of	air	conditioning	during	summer,	energy	savings,	or	the	
future	use	of	electric	cars.

If	only	the	patterns	of	demand	are	considered,	the	period	of	a	year	is	widely	accepted	
as	 necessary	 to	 exhibit	 the	 full	 range	 of	 extreme	 load	 levels.	 When	 large	 amounts	 of	
wind	power	that	alter	the	pattern	of	demand	are	involved,	interyear	variations	in	this	net	
demand	can	be	significant,	and	it	may	be	necessary	to	consider	a	number	of	years	to	
capture	high	or	low	wind	power	scenarios	and	extreme	situations	such	as	shutdown	due	
to	storms.

9.2.2  Wind Power Time Series

Meteorological	stations	provide	a	dataset	of	wind	speeds	that	can	be	transformed	into wind	
power	time	series	on	the	basis	of	a	set	of	assumptions	discussed	here.	In	the	example	in	this	
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chapter,	station	data	from	the	Netherlands	(see	Figure	9.1)	is	used	to	produce	estimates	for	
desired	locations.	The	locations	of	onshore	wind	parks	are	determined	by	extrapolating	
the	present	distribution	of	onshore	wind	turbines	in	the	Netherlands	to	larger	wind	power	
capacity	levels,	taking	into	account	provincial		targets [3].	Locations	of	offshore	wind	parks	
are	based	on	a	selection	of	locations		proposed	by	the	Dutch	Ministry	of	Economic	Affairs	
[4]	and	under	consideration	by	Noordzeeloket [5].	The	minimum	number	of	sites	required	
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for	reproduction	of	the		relevant	patterns	and	geographical	diversity	is	difficulty	to	general-
ize.	For	the	case	of	the	Netherlands,	most	possible	wind	park	locations	are	found	in	an	area	
of	approximately	80–100	km2,	to	the	west	of	Hoek	van	Holland	to	Den	Helder,	and	a	small	
section	of	the	Wadden	Sea,	north	of	Groningen,	as	can	be	seen	in	Figure	9.2.

In	addition	to	a	geographically	representative	cover	of	measurements	for	the	region	
being	studied,	data	or	assumptions	regarding	the	area	and	machine	type	of	 the	wind	
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farms	in	question	are	used	in	the	conversion	of	wind	speed	time	series	 to	wind	farm	
power	output,	as	is	now	elaborated	following	the	method	described	in	Reference	[6].	For	
a	deeper	discussion	of	the	method,	the	reader	is	directed	toward	Reference	[8].

9.2.2.1  From Meteorological Observations to Wind Farm Locations

First,	wind	speed	time	series	from	measurements	or	mesoscale	model	output	are	used	to	
determine	periodic	patterns	at	each	location.	The	use	of	time	series	guarantees	that	cor-
relations	of	wind	speeds	(variations	over	space	and	time)	are	automatically	taken	into	
account.	The	wind	speed	data	are	transferred	from	measurement	height	to	wind	turbine	
hub-height.	The	data	are	then	transferred	from	the	measurement	sites	to	existing	and	
foreseen	locations	of	wind	parks	by	linear	interpolation,	taking	into	account	the	spatial	
correlation	between	the	sites.

Analysis	of	the	wind	speed	measurement	data	reveals	that	the	sample	variance	of	the	
wind	speed	increases	with	the	average	wind	speed	[6].	To	suppress	this	so-called	het-
eroscedasticity,	a	variance	stabilizing	transformation	[7]	is	applied	and	the	logarithm	of	
the	wind	speed	is	used	instead	of	wind	speed	itself.	To	arrive	at	a	suitable	wind	speed	
time	series	model,	any	periodic	effects	in	the	wind	patterns	must	be	investigated	first.	
For	the	sites	onshore	and	offshore	in	the	Netherlands,	the	daily	pattern	was	determined	
(see	Reference	[8])	to	be	more	significant	than	any	seasonal	pattern.	In	Figure	9.3,	the	
average	wind	pattern	is	plotted	for	each	of	the	wind	speed	measurement	locations	for	
one	 day.	 The	 lower	 curves	 correspond	 to	 locations	 onshore	 and	 the	 upper	 ones	 to	
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FIGURE 9.3 Deterministic	 component	 μ(x,	 t)	 of	 wind	 speed	 at	 different	 locations:	 A	 daily	
wind	 speed	 pattern	 for	 observed	 (dark)	 and	 interpolated	 (light)	 signals.	 (Adapted	 from	 A.	 J.	
Brand,	M.	Gibescu,	and	W.	W.	de	Boer.	in	Wind Power,	S	M	Muyeen	(ed.).	Croatia:		InTech,	2010.	
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	offshore.	It	can	be	observed	that	onshore	measurement	locations	have	a	typical	maxi-
mum	occurring	around	midday,	offshore	locations	have	a	rather	flat	daily	profile	with	a	
higher	average,	and	coastal	locations	fall	somewhere	in	between.

This	daily	pattern	comes	from	large-scale	geographical	features	and	local	effects,	and	
the	pattern	varies	smoothly	but	significantly	with	location.	This	pattern	is	discerned	by	
averaging	in	bins	for	each	hour	of	the	day	over	all	days	in	the	series.	The	remaining	sto-
chastic	component	of	the	signal,	which	at	times	overpowers	the	daily	pattern,	can	then	be	
characterized	through	statistical	analysis.	The	log	wind	speed	field	w(x,t)	is	modeled	as

	 w t t t( , ) ( , ) ( , )x x x= +μ ε 	 (9.1)

where	x	 is	a	vector	holding	the	location	coordinates,	t	 is	time,	μ(x,t)	 is	a	deterministic	
variable	representing	the	daily	wind	pattern,	and	ε(x,t)	is	a	zero-mean	random	process	
variable	 representing	 shorter-term	 variations	 around	 the	 daily	 mean.	 The	 covariance	
structure	of	ε(x,t)	must	take	into	account	the	geographical	correlations	between	different	
locations,	especially	for	smaller	areas	such	as	the	Netherlands.	It	is	assumed	that	the	wind	
is	a	Markov	process	and	that	only	the	lag	1	autocorrelation	of	the	signal	should,	therefore,	
be	 captured.	 The	 full	 development	 concerning	 the	 synthesis	 of	 new	 data	 from	 old	 is	
detailed	in	Reference	[8],	and	requires	determination	of	means,	spatial	covariances,	and	
autocorrelation.	In	this	text,	we	examine	the	results	for	the	latter	two	characteristics.

For	the	estimation	of	the	random	component	ε(x,t),	the	covariance	cov(ε(xi,t),	ε(xj,t))	
between	two	locations	xi	and	xj	is	calculated.	In	Figure	9.4,	wind	speed	covariances	are	
plotted	versus	the	distance	between	measurement	locations.	Assuming	that	covariance	
reaches	zero	at	large	distances,	it	is	modeled	through	an	exponential	decay:

	
cov( ( ), ( )) expε ε αx x x xi j i ja= − −( )0 0 	

(9.2)
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FIGURE 9.4 Space	and	 time	properties	of	 stochastic	component	ε(x,	 t)	of	wind	field.	Spatial	
correlation	as	a	 function	of	distance	 is	 shown	with	exponential	fit	 (solid	 line)	 in	 (a),	while	 the	
autocovariance	 in	 time	of	 the	measured	and	synthetic	data	 is	compared	 in	(b).	 (Adapted	 from	
A. J. Brand,	M.	Gibescu,	and	W.	W.	de	Boer.	in	Wind Power,	S	M	Muyeen	(ed.).	Croatia:	InTech,	
2010.	 ISBN:	 978-953-7619-81-7;	 	 	Available	 at:	 http://www.intechopen.com/articles/show/title/
variability-and-predictability-of-large-scalewind-energy-in-the-netherlands.)
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where	 parameters	 a0	 and	 α0	 are	 estimated	 using	 a	 least-squares	 fit,	 also	 shown	 in	
Figure  9.4,	 with	 1/α0	 as	 the	 characteristic	 distance	 or	 decay	 parameter.	 Translation	
of  this	 decay	 fit	 from	 log	 wind	 speed	 to	 wind	 speed	 gives	 a	 characteristic	 distance	
of 610	km,	a	value	 in	 line	with	 those	reported	elsewhere	 [9,10].	A	similar	 functional	
form	has	been	used	to	characterize	temporal	dependence	in	the	following	covariance	
between	samples:

	
cov ( ( )), ( ( )) expε ε αx x x xi j i jt t a−( ) = − −( )1 1 1 	 (9.3)

where	parameters	a1	and	α1	are	estimated	using	a	least-squares	fit.	The	lag	1	autocovari-
ance	of	the	measurements	has	been	compared	in	Figure	9.4	with	that	of	the	synthesized	
data	for	multiple	sites.	Although	not	perfect,	there	does	not	appear	to	be	any	structural	
bias	[6].

The	measurement	height	for	meteorological	stations	does	not	correspond	to	the	hub	
height	of	modern	wind	turbines	(70–120	m).	A	height	transformation	can	be	applied	to	
the	measurements	based	on	 logarithmic	approximation	describing	how	flowing	air	 is	
slowed	close	to	the	surface	of	the	earth	due	to	drag	and	other	ground	effects.	A	detailed	
exposition	of	can	be	found	in	the	literature	[6]	or	texts	[8].

The	wind	speeds	at	the	farm	locations	marked	in	Figure	9.2	are	estimated	by	interpo-
lation	of	the	wind	speed	data	at	18	measurement	locations.	In	order	to	obtain	the	wind	
speeds	at	other	locations,	a	linear	spatial	interpolation	can	be	applied	for	all	locations	
within	the	boundary	of	the	measurement	locations.	For	locations	outside	this	boundary,	
nearest-neighbor	interpolation	is	applied.

The	linear	interpolation	takes	 into	account	the	spatial	correlations	among	multiple	
sites	to	arrive	at	wind	speed	time	series	for	existing	and	foreseen	wind	power	locations.	
The	results	have	been	cross-validated	by	removing	one	location	from	the	n-site	measure-
ment	set	at	a	time	and	using	the	remaining	n	−	1	measurement	sites	to	estimate	it.

9.2.2.2  From Wind Speed to Farm Power

Wind	speed	and	wind	power	are	governed	by	a	third-order	relationship.	The	actual	rela-
tionship	between	wind	speed	and	the	wind	power	output	of	a	wind	turbine	is	defined	by	
the	 wind	 turbine	 power	 curve,	 defining	 the	 amount	 of	 power	 generated	 by	 the	 wind	
turbine	Pwt	at	wind	speed	v	[11]:

	 P C A vp rwt = ρ λ θ( , ) 3
	 (9.4)

where	ρ	is	the	density	of	air	(kg/m3),	Cp	the	power	coefficient	of	the	wind	turbine,	λ	the	
tip	 speed	 ratio	 between	 the	 turbine	 blade	 tip	 speed	 vt	 (m/s)	 and	 the	 wind	 speed	
upstream	from	the	rotor	v	(m/s),	θ	the	blade	pitch	angle	(degree),	and	Ar	the	swept	area	
of	the	turbine	rotor	blades	(m2).	Wind	turbines	control	their	λ	and	θ	and	thereby	Cp	in	
order	to	maintain	rated	electric	power	generation	at	higher	wind	speeds	and	to	pre-
vent	mechanical	overloading	of	the	turbine’s	moving	components	and	structure.	The	
maximum	power	coefficient	Cp	of	an	ideal	wind	turbine	rotor	is	16/27,	which	is	known	
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as	the	Lanchester–Betz–Joukowsky	limit	[12].	As	it	is	only	possible	to	maximize	Cp	for	
a	limited	range	of	wind	speeds,	the	design	and	control	of	Cp	and	the	wind	turbine	are	
such	 that	 the	 conversion	 efficiency	 is	 highest	 at	 the	 wind	 speed	 range	 where	 most	
energy	can	be	captured.	Wind	speeds	can	be	converted	to	wind	power	using	the	wind	
turbine’s	wind	speed–power	curves,	which	is	based	on	the	fundamental	relationship	
shown	in	Equation	9.4,	but	accounts	for	the	effect	of	controls.	Apart	from	the	power	
coefficient,	which	is	specifically	designed	for	different	wind	classes,	wind	speed–power	
curves	are	also	determined	by	wind	turbine	technology	and	type.

Throughout	the	development	of	wind	power	in	the	past	decades,	different	wind	tur-
bine	 technology	 concepts	 have	 been	 used,	 each	 with	 different	 power	 curves.	 These	
concepts	can	be	categorized	by	generator	type.	The	four	most	commonly	used	machine	
types	 for	 wind	 turbines	 are	 the	 fixed	 speed	 wind	 turbine	 with	 induction	 generator	
(type	A),	variable	 speed	with	variable	 rotor	 resistance	 (type	B),	variable	 speed	with	
doubly	 fed	 induction	 generator	 (type	 C),	 and	 direct	 drive	 turbine	 with	 permanent	
magnet	generator	(type	D)	[13,14].

Since	 the	 late	 1990s,	 most	 wind	 turbine	 manufacturers	 have	 changed	 to	 variable	
speed	 for	power	 levels	 from	about	1.5	MW	and	above.	The	different	 turbine	concepts	
have	different	power	curves.	Wind	speed–power	curves	for	each	type	of	wind	turbine	
are	shown	in	Figure	9.5	[15],	assuming	an	air	density	of	1.225	kg/m3	and	no	noise	con-
straints	 for	 turbine	 operation.	 Modern	 types	 C	 and	 D	 involve	 turbines	 with	 larger	
capacities,	whereas	type	A	does	not	produce	a	flat	power	curve	at	wind	speeds	exceeding	
15	m/s	 (rated	 wind	 speed).	 Regions	 of	 the	 power	 curves	 of	 special	 interest	 for	 power	
system	integration	are	 in	 the	range	of	5–15	m/s,	where	changes	 in	wind	speed	corre-
spond	 to	 relatively	 large	 changes	 in	 electrical	 power	 output,	 and	 the	 cut-out	 speed	
(20	m/s	 for	NEG-MICRON	NM48,	25	m/s	 for	Vestas	V52	and	V90),	where	the	power	
output	of	the	wind	turbine	changes	from	full	and	no	power.
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FIGURE 9.5 Wind	turbine	power	curves	for	the	NEG-MICON	NM48	(a),	Vestas	V52	(b),	Vestas	
V90	(c),	and	Enercon	E82	with	storm	control	(d).	(Adapted	from	B.	C.	Ummels.	Wind	integration:	
Power	 system	 operation	 with	 large-scale	 wind	 power	 in	 liberalized	 environments.	 PhD	 thesis,	
Technische	Universiteit	Delft,	the	Netherlands,	2009.)
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Manufacturer	 power	 curves	 for	 a	 single	 turbine	 for	 the	 relation	 of	 wind	 speed	 to	
wind	power	are	commonly	used	for	transformation	of	measured	and	synthetic	wind	
speed	 data	 series	 to	 an	 input	 for	 unit	 commitment	 or	 power	 system	 studies	 [16,17].	
Applying	such	curves	to	predict	the	output	of	an	entire	farm	will	significantly	overes-
timate	power	variations	near	cut-out	wind	speeds,	because	different	machines	experi-
ence	different	wind	speeds,	especially	offshore	where	distances	between	wind	turbines	
are	significant.	A	methodology	for	the	development	of	wide-area,	aggregated	wind	park	
power	curves	is	presented	in	Reference	[18],	enabling	the	development	of	wind	power	
data	based	on	locational	shares	of	the	total	capacity	spread	out	over	large	geographical	
areas.	 The	 approach	 makes	 use	 of	 the	 distance	 between	 wind	 farms	 to	 develop	 a	
Gaussian	filter	(normal	distribution	function)	that	characterizes	wind	speed	deviations	
around	the	park’s	average	wind	speed	at	a	given	wind	park	location.	The	filter	is	con-
volved	with	the	power	curve	of	a	single	turbine	to	yield	a	new	smoothed	power	curve.	
This	 methodology	 was	 intended	 for	 the	 production	 of	 country-scale	 equivalents	 for	
wind	power,	but	its	underlying	principles	can	also	be	applied	to	develop	power	output	
data	for	farm-sized	areas.	The	width	of	an	appropriate	Gaussian	filter	can	be	derived	by	
taking	 into	 account	 regional	 variations	 of	 wind	 speeds	 based	 on	 exponential	 decay	
[18,6]	and	the	layout	of	farms	[8].

For	each	wind	park,	a	location-dependent	power	curve	is	thus	developed	based	on	the	
local	standard	deviation	of	wind	speed	and	the	geographical	size	of	the	wind	park.	Such	
an	approach	ignores	park	effects	such	as	wind	turbine	wakes,	which	can	slightly	alter	
annual	yields	[19]	but	are	much	less	significant	than	the	differences	 in	wind	resource	
from	year	to	year.	More	significant	sources	of	error	are	the	assumptions	made	regarding	
wind	park	locations,	distances	of	turbines,	and	wind	park	layout.

Figure	9.6	shows	an	example	of	a	multiturbine	curve	developed	for	an	offshore	wind	
park.	The	influence	of	the	filter	is	most	visible	around	the	cut-out	wind	speed	(25	m/s),	
where	the	wind	turbine	alternates	between	full	power	and	no	power.	This	illustrates	how	
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FIGURE 9.6 Example	of	a	multiturbine	power	curve	for	an	offshore	wind	park.	(Adapted	from	
A.	J.	Brand,	M.	Gibescu,	and	W.	W.	de	Boer.	in	Wind Power,	S	M	Muyeen	(ed.).	Croatia:	InTech,	
2010.	ISBN:	978-953-7619-81-7;	Available	at:	http://www.intechopen.com/articles/show/title/vari-
ability-and-predictability-of-large	-scale-wind-energy-in-the-netherlands.)
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the	wind	speed	deviations	from	the	wind	park’s	average	wind	speed	at	individual	tur-
bine	 locations	result	 in	a	smoothing	of	 the	wind	park’s	power	curve.	The	wind	speed	
data	developed	above	for	each	wind	park	location	can	be	multiplied	with	the	parks’	mul-
titurbine	power	curve	in	order	to	develop	wind	power	data.

The	last	step	for	the	development	of	the	wind	power	time	series	for	each	wind	park	is	
the	incorporation	of	the	unavailability	of	wind	turbines.	This	can	be	done	in	different	
ways,	with	a	full	Monte	Carlo	outage	approach	delivering	the	most	accurate	results.	The	
large	number	of	wind	turbines	(<1000	for	the	smallest	penetration	level)	and	the	aggre-
gation	of	wind	power	output	 at	 system	 level	makes	 the	added	value	of	 this	 approach	
limited	compared	to	an	averaged	availability	rate.	For	the	example	in	this	chapter,	wind	
turbine	availability	rates	are	assumed	to	be	constant	at	98%	for	onshore	wind	turbines	
and	95%	for	offshore	turbines,	the	latter	due	to	more	difficult	access.	It	can	be	noted	that	
availability	rates	for	wind	turbines	placed	offshore	may	well	be	lower	than	this	figure	
[20].	For	system	integration	studies,	assuming	a	higher	rate	builds	some	conservatism	
into	the	results.	For	a	consideration	of	portfolio,	it	would	be	wise	to	select	several	values	
for	availability	or	conduct	a	sensitivity	analysis.

9.2.3  Wind Power Forecasts

In	Chapter	5,	the	state-of-the-art	wind	power	forecasting	was	introduced.	Wind	farm	
owners	and	utilities	may	well	obtain	 these	 sophisticated	 forecasts	 from	third	parties.	
The	basic	time	series	and	numerical	weather	forecasts	introduced	in	Sections	5.2	and	5.3	
in	Chapter	5	are	sufficient	for	most	unit	commitment	studies.

For	the	example	in	this	chapter,	numerical	weather	forecasts	were	augmented	using	
a	physically	motivated	[21,22]	statistics	module	that	takes	into	account	the	local	influ-
ences	 of	 roughness,	 obstacles,	 and	 stability	 on	 wind	 speeds	 at	 the	 specified	 height.	
The forecasts	are	based	on	underlying	runs	of	the	atmospheric	high-resolution	limited	
area	 model	 (HIRLAM),	 which	 is	 a	 numerical	 weather	 prediction	 (NWP)	 model.	
HIRLAM	 numerically	 approximates	 the	 physical	 state	 of	 the	 atmosphere	 at	 6-h	
	intervals	with	initial	conditions	taken	from	recent	observations.	The	statistics	module	
was	developed	by	the	Energy	Research	Centre	of	the	Netherlands	to	create	an	energy	
supply	forecast	for	renewable	energy	sources	(Aanbodvoorspeller	Duurzame	Energie	
or	ADVE).	The	wind	speeds	approximated	by	HIRLAM	are	postprocessed	by	AVDE	
into	 15-min	 averaged	 wind	 speed	 at	 hub-height	 for	 two	 onshore	 and	 five	 offshore	
	measurement	 locations.	These	approximated	wind	speeds	are	 then	compared	 to	 the	
measured	wind	speeds	to	obtain	wind	speed	forecast	errors.	Using	the	same	method	
applied	 for	 interpolating	 wind	 speed	 data,	 the	 wind	 speed	 forecast	 errors	 are	
	interpolated	 to	 the	 foreseen	 locations,	 and	 finally	 added	 to	 the	 interpolated	 wind	
speeds	 to	 develop	 forecast	 wind	 speed	 time	 series	 at	 the	 locations	 of	 interest.	 As	
the time	dependency	of	wind	speeds	is	taken	into	account	in	the	wind	speed	interpola-
tion	 method,	 time	 dependence	 is	 automatically	 included	 in	 the	 forecast	 time	 series	
as well.

The	 minimum	 lead	 time	 of	 the	 NWP	 model	 feeding	 the	 forecasting	 method	 that	
underlies	 the	 augmented	 forecast	 is	 6	h.	 Therefore,	 the	 first	 0–6	h	 are	 filled	 in	 by	 a	
	persistence-based	forecasting	method	fed	by	real-time	measurement	data.	For	this,	the	



9-12 Electric Power Systems

12–36-h-ahead	 aggregated	 wind	 power	 forecast	 errors	 are	 modeled	 as	 a	 first-order	
autoregressive	moving	average	(ARMA)	process:

	 ϕ ϕ γ σγ( ) ( ) ( ) ( )t a t b t t= − + − +1 1 	 (9.5)

where	 γ(t)	~	N	 (0,σ)	 is	 a	 zero	 mean,	 normally	 distributed	 noise	 term	 of	 standard	
	deviation	σ.	The	a,	b	and	σ	parameters	of	the	ARMA	process	are	estimated	by	the	maxi-
mum	likelihood	estimator	method	[7].	The	resulting	forecast	error	standard	deviation	
from	these	two	sources	is	plotted	as	a	function	of	prediction	horizon	in	Figure	9.7.

One	1–36-h-ahead	wind	power	forecast	is	developed	for	each	hour	of	the	year,	and	
incorporated	into	the	unit	commitment	algorithm	as	a	forecast	matrix	(see	Figure	9.15	
later	in	this	chapter).	The	wind	power	time	series	generated	using	the	methods	described	
in	Section	9.2.2.2	determines	the	actual	net	load.	As	the	UC–ED	algorithm	proceeds	to	
process	this	net	load,	it	uses	best	forecast	information	on	a	rolling	basis	for	intrahourly	
optimization	and	shifted	forecast	 information	to	simulate	 international	markets	with	
closures	(discussed	in	Section	9.5.3).

9.3  Modeling of Conventional Units

In	this	chapter,	we	label	as	conventional	units	all	those	types	of	generation	that	currently	
dominate	generation	mixes	in	most	power	systems	and	are	dispatchable	by	virtue	of	a	
controllable	fuel	source.

9.3.1  Modeling of Thermal Units

Conventional	thermal	units	derive	electricity	from	steam	turbines,	where	the	steam	can	
be	 produced	 from	 input	 water	 flows	 by	 reacting	 fossil	 fuels	 or	 nuclear	 fuels.	 In	 this	
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	chapter,	we	omit	other	possible	forms	of	thermal	units	such	as	geothermal	units.	Many	
types	of	fossil	units	exist;	most	are	fueled	with	either	coal	or	natural	gas.

Figure	9.8	demonstrates	the	operational	range	and	efficiency	of	several	types	of	fossil-
fueled	forms	of	power	generation.	The	acronym	CCGT	denotes	“combined	cycle	gas	tur-
bine.”	It	is	notable	that	each	type	of	generation	has	different	maximum	and	minimum	
production	levels	when	operating.	Also,	the	efficiency	of	generators	depends	on	the	level	
of	production.	These	factors	complicate	the	UC–ED	problem.

The	operating	cost	of	thermal	generation	units	include	fixed	and	variable	operating	costs	
such	as	start-up,	fuel,	and	emission	cost.	The	fuel-related	costs	has	the	general	form	[23]

	 C P H p p c c P c P c H c H c PHf e( , ) ( )( )= + + + + + +0 1 2
2

3 4
2

5 	 (9.6)

where	the	prices	of	fuel	and	emissions	pf	and	pe	are	based	on	the	fuel	consumed,	which	
is	 modeled	 by	 the	 bracketed	 quantity.	 Fuel	 consumed	 has	 a	 constant	 component	
c0 	associated	with	operational	losses,	costs	having	a	linear	and	quadratic	dependence	
on	the	power	P	and	heat	H	being	produced	(indicated	by	coefficients	c1,	c2,	c3,	and	c4),	
and	a	component	related	to,	in	some	cases,	the	product	of	P	and	H,	expressed	by	the	
coefficient	c5	[23].	Each	technology	has	a	different	set	of	coefficients,	some	of	which	may	
be	zero.	The	cost	of	starting	a	unit	can	be	given	a	time-dependent	formulation	depend-
ing	on	time	since	shutdown	and	on	fixed	start	costs,	but	detailed	 information	is	not	
always	available	for	all	units.	It	is	practical	to	assume	a	constant	cost	for	all	startups,

	 SC starts= c N6 	 (9.7)

where	c6	is	the	start-up	cost	and	Nstarts	is	the	number	of	start-ups.	The	two	costs	C	and	SC	
together	give	the	costs	of	operating	a	generating	unit.
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FIGURE 9.8 Thermal	 fossil	 unit	 efficiency	 at	 different	 operating	 points.	 CCGT	 denotes	
“	combined-cycle	gas	turbine”	and	CCS	denotes	carbon	capture	and	storage.	(Adapted	from	B.	
C.	Ummels.	PhD	thesis,	Technische	Universiteit	Delft,	the	Netherlands,	2009.)
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The	most	important	emissions	resulting	from	the	use	of	fossil	fuels	in	power	gen-
eration	 units	 are	 carbon	 dioxide	 (CO2),	 sulfur	 dioxide	 (SO2),	 and	 nitrogen	 oxides	
(NOx).	The	emissions	released	into	the	air	are,	 in	principle,	defined	by	the	elements	
involved	in	the	chemical	reactions	between	air	and	fuel.	This	is	mostly	methane	(CH4)	
for	 natural	 gas,	 and	 carbon	 (C),	 metal	 compounds,	 and	 several	 other	 compounds	
involving	hydrogen	(H),	sulfur	(S),	and	nitrogen	(N)	for	coal.	Emission	levels	of	CO2	
and	SO2	are	connected	only	to	the	fuel	composition	and	the	operating	efficiency	of	the	
unit.	For	NOx,	the	emission	levels	are	also	significantly	dependent	upon	a	range	of	fac-
tors	in	the	thermodynamic	processes	in	the	plant	[24].	Through	the	price	pe	in	Equation	
9.6	they	become	an	intrinsic	cost	of	operation.

Some	power	systems	include	CHP	units,	which	serve	a	local	demand	for	heat	by	provid-
ing	steam,	and	also	generate	electricity.	The	benefits	of	CHP	include	a	very	high	overall	
fuel	efficiency	(electricity	plus	heat),	up	to	87%	at	the	best	operating	point.	However,	the	
operation	of	CHP	units	is	dominated	by	the	local	demand	for	heat	or	steam.	Therefore,	
they	 introduce	 the	 influence	 of	 another	 varying	 input.	 Additionally,	 CHP	 units	 have	
	operating	constraints	associated	with	the	technical	operational	area	(power	P	and	heat	H)	
and	with	their	operational	status	due	to	heat	demand.	The	operation	area	of	each	CHP	unit	
can	be	described	as	a	set	of	n	linear	inequality	constraints	of	the	type:

	 d P e H fi i i+ ≥ 	 (9.8)

where	P	and	H	denote	electrical	power	and	heat	generation,	respectively,	and	di,	ei,	and	fi	
some	positive	 coefficients.	These	 inequalities	 each	define	a	 side	of	 a	polygonal	 region	
with	a	form	like	that	shown	in	Figure	9.9,	which	has	the	optimal	operating	point	in	the	
top-right	corner.

There	are	two	important	limitations	introduced	by	this	constraint	that	are	relevant	
to	unit	commitment.	At	high	heat	production,	the	flexibility	of	the	unit	decreases,	and	
at	times	of	low	load,	CHP	units	serving	industrial	loads	have	a	“must-run”	status	con-
sidering	the	needs	of	the	steam	supply.	This	means	they	cannot	so	easily	accommodate	
schedule	changes	necessary	to	meet	the	load.	For	units	serving	residential	loads,	heat	
boilers	and	buffers	may	offer	some	operational	flexibility	 for	the	CHP	(i.e.,	 temporal	
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FIGURE 9.9 Operation	area	of	combined	heat	and	power	(CHP)	units.
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decommitment	based	on	economics).	For	new	CHP	units,	sets	of	linear	inequality	con-
straints	are	developed	on	the	basis	of	the	unit’s	operating	efficiency.

The	 fuel	 consumption	 for	 the	 heat	 production	 by	 CHP	 units	 is	 included	 in	 their	
overall	 heat	 rate	 levels,	 which	 can	 be	 part	 of	 the	 optimal	 dispatch	 procedure.	 CHP	
units	 are	 assigned	 to	 certain	 heat	 districts,	 which	 may	 comprise	 one	 or	 more	 CHP	
units,	heat	boilers	and	heat	buffers.	Local	demand	for	heat	or	steam	takes	priority	in	
the	 scheduling	 of	 CHP	 units,	 with	 boilers	 and	 buffers,	 if	 available,	 standing	 by	 for	
peak-demand	situations.

Because	of	their	possible	limiting	effects	on	the	deployment	of	wind	power,	possibili-
ties	have	been	investigated	for	using	heat	storage	or	the	use	of	heat	boilers	[25,26].	This	
is	easiest	to	do	in	residential	areas.	Additional	operational	flexibility	of	industrial	CHP	
units	would	be	technically	possible	but	is	often	considered	as	unfeasible	due	to	the	risks	
associated	with	starting	and	stopping.	This	consideration	 is	 likely	 to	change	with	 the	
integration	of	large-scale	wind	power,	as	the	impact	of	wind	power	on	market	prices	can	
be	significant,	especially	during	periods	of	low	load.	A	must-run	status	of	CHP,	allowing	
operation	only	between	minimum	and	maximum	output,	becomes	less	profitable	with	
the	development	of	large-scale	wind	power.

Introducing	possibilities	for	storing	heat	allows	a	decoupling	of	the	generation	of	heat	
and	 power	 and	 thereby	 brings	 additional	 operational	 flexibility	 of	 the	 CHP	 units.	
A higher	flexibility	of	CHP	units	reduces	the	amount	of	must-run	capacity	in	the	system	
and	it	can	be	viewed	as	an	alternative	to	the	development	of	energy	storage	to	alleviate	
problems	during	periods	of	high	wind	power	and	low	load.	This	prospect	is	tested	in	the	
chapter	case	study.

9.3.2  Hydro and Storage Units

The	absence	of	combustion	processes,	fossil	fuels,	or	emissions	simplifies	the	modeling	
of	hydropower	units.	However,	the	cascading	of	different	hydro	units,	precipitation,	and	
natural	 variations	 of	 the	 reservoir	 inputs	 introduce	 significant	 complexity	 into	 the	
scheduling	and	optimization	of	these	units.	For	the	purposes	of	this	chapter,	a	relatively	
simple	treatment	of	hydropower	is	given.	The	interested	reader	is	directed	toward	one	of	
a	number	of	excellent	references	on	this	subject.	Three	different	types	of	hydro	units	can	
be	identified:	run-of-river	hydro,	reservoir	hydro,	and	pumped	hydro.	The	latter	can	be	
modeled	 such	 that	 it	 also	 represents	different	energy	 storage	 technologies	 [15],	 as	are	
studied	in	Section	9.6.

Run-of-river	hydro	comprises	hydropower	units	with	a	generating	capacity	depend-
ing	on	the	availability	of	the	primary	energy	source,	water.	In	case	water	is	available,	the	
unit	must	produce	power	or	the	water	must	be	spilled,	resulting	in	an	opportunity	loss.	
Run-of-river	hydro	usually	involves	smaller	generation	units	located	in	water	streams.	
Run-of-river	models	include	specifications	for	minimum	output	level	(MW), maximum	
output	level,	and	the	unit’s	water	inflow.	The	water	inflow	can	be	simplified	as	a	constant	
inflow	of	gross	energy	on	a	weekly	or	an	hourly	basis.	In	first	pass	of	the	unit	commit-
ment	process,	this	is	used	as	a	baseline	level	for	the	small	hydro	plants.

Reservoir	hydro	consists	of	a	unit	connected	to	a	hydro	reservoir,	allowing	decoupling	of	
water	inflow	and	electricity	generation.	The	reservoir	size	(GWh)	and	losses	(MWh/h)	are	
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defined	additional	to	the	minimum	and	maximum	output	levels	(MWh)	and	the	reservoir	
inflow,	which	is	modeled	as	net	energy	(GWh/week)	available	for	dispatch.	The	minimum	
power	level	of	the	reservoir	hydro	reflects	flow	constraints	and	any	run-of-river	elements	of	
this	type	of	hydropower.	As	an	alternative	to	the	explicit	modeling	of	run-of-river	hydro	
units,	the	minimum	level	of	a	large	reservoir	hydro	unit	can	be	adjusted	to	account	for	such	
units	as	a	single	aggregate	unit.	Because	of	its	large	storage	capacity,	the	operation	of	reser-
voir	hydro	can	be	dispatched	to	minimize	cost	over	a	week-long	horizon.

Pumped	hydro	 is	 capable	of	 storing	energy	by	converting	electricity	 into	potential	
energy.	 Pumped	 hydro	 is	 modeled	 as	 a	 reservoir	 hydro	 unit	 with	 a	 pumping	 facility	
between	 two	 reservoirs.	 Using	 the	 pumps	 for	 storing	 energy	 in	 the	 upper	 reservoir	
increases	the	head	level	Hres	(m)	by

	 H R B Ares = +( )/ 	 (9.9)

where	R	 is	 the	reservoir’s	energy	content	 (GWh)	and	A	 (GWh/m2)	and	B	 (GWh)	are	
constants	depending	on	the	physical	size	of	the	reservoir.	The	head	level	is	important	
especially	for	pumped	hydro	units	with	a	small	height	difference	between	the	reservoirs,	
as	 conversion	 efficiency	 is	 partly	 dependent	 on	 the	 head	 level	 in	 this	 case.	 Pumped	
hydro	operation	includes	the	constraint	that	R	must	be	the	same	at	the	beginning	and	at	
the	end	of	each	week.	A	ramp	rate	may	be	included	in	the	model	in	order	to	take	into	
account	any	technical	limitations	to	the	operational	flexibility	or	by	setting	the	mini-
mum	time	needed	for	changing	from	pump	to	generator	operation,	if	applicable.

Wind	 power	 and	 hydropower	 and/or	 energy	 storage	 form	 a	 natural	 combination.	
Therefore,	wind	power	and	(hydro)	energy	storage	have	been	considered	in	a	back-to-
back	configuration	[27]	or	as	a	hybrid	system	to	provide	firm	power	[28].	Wind	power	
may	be	used	to	fill	up	storage	reservoirs	during	high	wind	periods,	either	by	pumping	up	
or	by	saving	water,	and	the	stored	energy	may	be	used	for	electricity	generation	during	
low	wind	periods.	When	low	prices	coincide	with	high	wind	availability,	storage	units	
operating	independently	in	the	market	will	play	such	a	role.

Hydropower	 and	 energy	 storage	 can	 be	 optimized	 by	 use	 of	 the	 value-of-energy	
method	based	on	marginal	cost.	Time-related	constraints	such	as	generation	cost,	oper-
ational	aspects	of	thermal	generation	units	and	storage	reservoir	size	are	major	determi-
nants	in	the	dispatch	of	energy	storage.	Thus,	energy	storage	generates	if	the	marginal	
cost	is	higher	than	the	generating	value	of	energy	and	stores	if	the	marginal	cost	is	lower	
than	the	pumping	value	of	energy,	and	remains	idle	otherwise.

9.4  UC-ED Problem Formulation

In	principle,	UC–ED	is	a	problem	of	optimization.	The	power	production	of	the	ith	gen-
erator	 in	area	n	 is	a	 function	of	 time	 P ti

n( ),	 and	each	generator’s	production	must	be	
chosen	to	minimize	overall	operating	cost:
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where	N	is	the	set	of	area	indices,	Gn	is	the	set	of	generator/load	bus	indices	in	area	n,	T	
is	the	set	of	time	indices	in	the	full	optimization	horizon	of	discrete	time	steps,	and	SC	
and	C	are	as	defined	in	Equations	9.6	and	9.7,	but	indexed	by	generator	i	and	area	n.	The	
condition	of	actually	serving	load	by	dispatching	generation	within	its	safe	limits	can	be	
expressed	as	a	number	of	constraints:
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where	M	 is	the	set	of	interconnection	indices,	Ln(t)	is	electricity	demand,	and	k	 is	the	
week	number.	The	overbar	indicates	an	upper	limit	on	a	variable,	whereas	the	underbar	
indicates	a	lower	limit,	and	additional	symbols	are	defined	as	follows.	Constraint	9.11	
sums	the	interarea	electric	power	transfers	Xm(t)	with	generation	and	load	to	state	that	
electricity	production	and	import	must	equal	electricity	demand	in	each	area	n.	Equality	
of	heat	production	H	and	heat	demand	D	is	imposed	by	constraint	9.12.	The	maximum	
capacity	of	transmission	between	areas	must	be	observed,	as	given	by	constraint	9.13.	
The	next	 three	relations	express	constraints	on	the	capability	of	 the	generating	units.	
Each	unit	has	a	minimum	and	a	maximum	level	of	generation	as	denoted	by	underbar	
and	overbar	notations,	a	maximum	ramp	rate	Ri

n,	and,	in	the	case	of	hydro	generators,	
each	week	k	a	finite	energy	E(k)	in	its	reservoir.	This	E(k)	value	would	be	derived	from	
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a separate	long-term	optimization	of	hydro	capacity.	Relation	9.17	expresses	that	each	
area	 must	 maintain	 a	 spinning	 reserve	 SRn,	 and	 relation	 9.18	 expresses	 the	 fact	 that	
unavailable	units	have	a	zero	output.	The	vector	Ai

n(t)	indicating	a	unit’s	availability	is	
set,	as	will	be	discussed	in	Section	9.5,	to	reflect	scheduled	outage,	forced	outage,	and	
decommitment	decisions.

The	following	assumptions	have	been	applied:

	 1.	 The	transmission	system	within	each	area	n	has	no	losses	and	sufficient	capacity	
(copper	plate	assumption).

	 2.	 Demand	is	inelastic.
	 3.	 Adjustments	 are	 not	 made	 by	 operators	 to	 optimize	 generator	 dispatch	 level	

between	day-ahead	energy	markets	and	intraday	balancing	markets.

9.5   Solution Approach: Optimization 
Heuristics and Horizons

The	unit	commitment	problem	as	formulated	is	a	mixed-integer	optimization	problem.	
A	practical	solution	of	the	minimization	problems	9.10	through	9.18	will	be	pursued	in	
this	 chapter	 by	 applying	 several	 simplifying	 assumptions,	 and	 breaking	 it	 into	 three	
subproblems,	each	with	its	own	time	horizon:	annually,	weekly,	and	a	short-term	opera-
tional	 time	step	(e.g.,	hourly).	An	annual	horizon	 is	used	 to	realistically	address	unit	
outages	and	generate	the	initial	availability	indicator	functions	Ai

n(t)	to	reflect	mainte-
nance	schedules	and	forced	outages;	a	weekly	horizon	is	used	for	the	optimal	scheduling	
of	hydro	and	energy	storage	units;	and	a	short-term	horizon	is	used	for	the	simulation	
and	optimization	of	thermal	unit	operation	and	exchanges.	Heuristic	solution	methods	
are	used	that	may	not	be	globally	optimal,	but	have	a	common	sense	interpretation	and	
reflect	utility	practices.

Thus,	the	following	further	assumptions	have	been	applied:

	 1.	 Weeks	may	be	optimized	independently	of	each	other.
	 2.	 Hydropower	always	has	the	lowest	variable	cost.
	 3.	 Wind	power	has	negligible	variable	cost.

9.5.1  Annual Horizon: Determining Unit Availability

Outages	comprise	all	events	leading	to	a	partial	unavailability	of	generation	units	in	
the	system.	A	differentiation	can	be	made	between	unforced	or	planned	outages,	such	
as	due	to	scheduled	maintenance,	and	forced	outages,	such	as	due	to	unexpected	tech-
nical	failures	of	the	unit.	Planned	outages	are	usually	scheduled	with	the	objective	of	
minimizing	 opportunity	 losses	 or	 minimizing	 reliability	 risk,	 for	 instance	 through	
the	loss-of-load	probability	(LOLP)	calculation,	a	widely	used	reliability	measure	in	
generation	 planning.	 This	 can	 be	 done	 by	 scheduling	 maintenance	 when	 prices	 are	
assumed	to	be	low	(low	load	periods)	or	by	distributing	maintenance	between		different	
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units	over	different	periods,	resulting	in	a	rather	constant	generation	adequacy	during	
the	year.

For	the	example	in	this	chapter,	the	LOLP	reliability	index	is	computed	in	hours	per	
year	using	the	cumulant	method	[29].	After	calculation	of	the	LOLP,	load	carrying	abil-
ity	and	capacity	 surplus/deficit	are	calculated	relative	 to	a	 specified	reliability	 index.	
This	index	is	used	for	an	annual	optimization	of	the	maintenance	schedules	and	the	
production	of	availability	indicator	functions	Ai

n(t)	for	all	units.
An	outage	model	further	adjusts	the	availability	indicator	using	a	random	number	

generator	for	a	specified	number	of	trials	(i.e.,	Monte	Carlo	draws).	Each	trial	is	saved	
and	used	as	input	for	a	weekly	simulation.	The	expected	unit	availability	for	individual	
iterations	and	across	all	iterations	can	be	computed	for	later	evaluation.

An	ensemble	of	these	functions	is	created	where	each	trial	has	further	unavailability	
imposed	on	it	based	on	a	full	Monte	Carlo	assessment	of	forced	outages.	The	resulting	
indicator	functions	can	then	form	the	input	to	runs	of	the	UC–ED	optimization	algo-
rithm,	as	shown	in	Figure	9.10.

9.5.2  Weekly and Intrahourly Horizon: Determining Dispatch

The	unit	commitment	is	optimized	initially	by	heuristics	based	on	the	load	prediction	
and	 wind	 power	 forecast.	 Subsequently,	 it	 is	 improved	 in	 three	 iterative	 processes	 for	
hydro,	thermal	units	and	exchange,	and	energy	storage	units.	The	general	flow	is	as	shown	
in	Figure	9.11.	The	first	and	final	decision	boxes	come	into	play	when	allowing	the	possi-
bility	of	international	exchange	markets	with	advance	gate-closure	times.	As	detailed	in	
a	Section	9.5.3,	this	involves	two	successive	applications	of	the	UC–ED	algorithm.

In	both	cases,	the	steps	to	optimize	dispatch	over	a	week	are	as	follows.	First,	hydro-
power	 stations	 are	 scheduled	 using	 a	 price	 leveling	 algorithm	 based	 on	 their	 weekly	
energy	 constraint,	 load	 prediction,	 and	 wind	 power	 forecast.	 The	 hydro	 schedules	
are  subject	 to	 hourly	 minimum	 and	 maximum	 generation	 levels	 and	 ramp-rate	
limitations.
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schedule	 and	 forced	 outages	 comprise	 the	 input	 to	 the	 unit	 commitment–economic	 dispatch	
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Second,	the	model	then	uses	local	heat	demands,	system	load,	wind	power,	and	wind	
power	 forecasts	 for	 the	scheduling	of	 the	 thermal	generation	units	on	 the	short-term	
operational	time	step,	considering	both	generator	and	area	technical	constraints	such	as	
spinning	reserve.	In	this	step,	international	exchanges	are	also	set.	The	starting	condi-
tion	of	the	short-term	simulation	is	defined	by	the	output	of	the	weekly	simulation	and	
the	generation	units’	states	at	the	end	of	the	previous	week,	taking	into	account	outages	
and	minimum	up	and	down	times.	The	heuristic	optimization	process	is	done	using	the	
equal	incremental	cost	method	[23],	which	is	illustrated	in	Figure	9.12	and	comprises	the	
following	steps:

	 1.	 Set	all	available	generation	units	at	maximum	power	 level,	 taking	 into	account	
operating	constraints.

	 2.	 Calculate	decremental	cost	arrays	for	each	short-term	time	step.
	 3.	 Find	the	largest	unit	decremental	cost.
	 4.	 Decommit	or	ramp	down	most	expensive	unit(s).

ramp all
units up max

from last hour

compute
hourly

cost array

identify,
increment
exchanges

transfer
capacity

remaining

generation
matches

load?

all 
constraints

met?

identify most
expensive,

decrement/
decommit

generation plus
exchange

exceeds or
matches

load

N
Y

Y

Y

Y

N

N N

re-commit or
increment

??

?

?

hourly
decremental

cost array

update
availability

FIGURE 9.12 Sequence	and	dependence	of	intrahourly	optimization.

load
trial’s

availabilities

reset
week counter

select
kth week

wind forecast,
wind power

heat
demand

increment
week

counter

all
weeks
done?

first
iteration?

levelized
load

1st
pass

?

1st
pass

?

increment
trial

counter

storage
exchange
schedule

subtract exchange
shedules from loads

load exchange
schedule

Optimize
Hydro

Dispatch

Optimize
Energy
Storage

Dispatch

Optimize
Thermal and

Exchange
Dispatch

disable exchanges
select normal wind

power forecast

enable exchanges,
select gate closure

 forecast

YY

N
N

N

N

Y

Y ?

? ??

hourly
decremental

cost array

FIGURE 9.11 Sequence	and	dependence	of	optimizations	carried	out	over	weekly	and	hourly	
horizons.



9-21Unit Commitment and Economic Dispatch for Operations Planning

The	 construction	 of	 the	 decremental	 cost	 arrays	 takes	 into	 account	 system	 load,	
heat	dispatch,	and	decommitment	cost	while	satisfying	minimum	up	and	down	times	
and	ramp	rates.	The	costs	of	generating	heat	by	CHP	units	are	taken	into	account	in	
the	calculations	of	the	marginal	cost	of	these	units.	In	case	the	system	comprises	dif-
ferent	areas,	decremental	cost	arrays	are	constructed	for	each	area	taking	into	account	
transarea	transmission	constraints	(i.e.,	net	transfer	capacity	between	areas),	if	appli-
cable.	After	completion	of	the	decrement	procedure,	system	costs	are	calculated	and	
these	steps	are	repeated	until	 load,	heat	demand,	and	reserve	requirements	are	bal-
anced.	The	repetitive	process	provides	marginal	cost	for	all	areas	and	all	units.	It	can	
be	 noted	 that	 the	 must-run	 status	 of	 many	 base-load	 units	 (coal,	 industrial	 CHP)	
in  the	 Dutch	 system	 studied	 here	 reduce	 the	 complexity	 of	 unit	 commitment	
optimization.

Third,	based	on	the	hourly	decremental	cost	array	obtained	through	the	first	thermal	
optimization,	energy	storage	is	scheduled	such	that	total	operating	costs	over	the	week	
are	minimized.	This	is	equivalent	to	maximizing	the	profit	of	the	energy	storage	opera-
tor.	The	general	operating	strategy,	as	depicted	in	Figure	9.13,	is	to	generate	when	mar-
ginal	costs	are	high,	to	store	energy	when	marginal	costs	(and	prices)	are	low,	and	to	do	
nothing	otherwise.

9.5.3  Multiarea Representation and International Gate Closure

As	mentioned	in	the	assumptions,	basic	unit	commitment	analysis	usually	neglects	the	
electric	network,	assuming	it	can	connect	any	generator	to	any	load	without	limit	within	
a	 certain	 area.	 However,	 the	 ability	 to	 model	 some	 degree	 of	 trade	 between	 different	
power	markets	or	market	areas	 is	required	to	account	 for	 the	possibilities	of	 interna-
tional	trade	and	to	assess	the	potential	for	new	transmission	lines.	An	example	of	a	set	
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of	areas	is	shown	in	Figure	9.14;	these	areas	are	used	in	the	case	study	found	at	the	end	
of	this	chapter.

A	complication	posed	by	international	markets	is	that	they	have	a	“gate-closure	time”;	
the	transfer	amounts	are	settled	some	period	of	time	in	advance	of	their	delivery.	Gate-
closure	times	are	commonly	a	day	ahead	or	earlier.	In	principle,	it	can	be	assumed	that	
an	international	market	optimizes	dispatch	in	the	same	way	a	regular	electricity	market	
does,	and	both	approach	the	solution	given	by	an	economic	dispatch	analysis	algorithm.	
The	difference	is	that	international	markets	must	use	advance	information	that	is	neces-
sarily	more	uncertain	and	likely	less	accurate.

A	useful	approach	to	acknowledge	the	differing	information	quality	associated	with	
trade	is	to	solve	the	unit	commitment	problem	using	two	passes	[15].	On	the	first	pass,	
transfers	between	different	areas	up	to	a	predefined	available	capacity	are	allowed	dur-
ing	 the	 dispatch	 phase.	 However,	 for	 wind	 power,	 the	 information	 at	 a	 given	 time	 is	
drawn	from	the	prediction	made	from	some	time	ago	in	the	past.	Three	intervals	are	
used,	 to	correspond	to	different	gate-closure	 times	considered:	day-ahead,	3-h	ahead,	
and	 1-h	 ahead.	 This	 concept	 is	 illustrated	 in	 Figure	9.15,	 with	 the	help	of	 a	 “forecast	
matrix”	that	depicts	the	forecast	available	(a	row)	at	a	successive	hours.

The	first	column	contains	the	actual	power	at	a	given	time,	and	can	be	viewed	as	a	
perfect	forecast.	Other	columns	contain	a	slice	of	the	forecast	matrix	that	can	be	used	to	
simulate	1	or	3-h	gate	 closure.	For	 example,	 at	 time	h	=	1,	decisions	about	3	h	 in	 the	
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FIGURE 9.14 Multiple	area	model	used	in	this	chapter’s	example.	Acronyms	denote	Northwest	
European	countries.
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future	can	only	be	made	using	this	hour’s	forecast	about	sample	t	=	13.	Therefore,	even	a	
rolling	forecast	can	only	use	information	as	good	as	is	contained	in	the	right-most	verti-
cal	column	in	the	figure.	This	situation	would	be	simulated	by	starting	at	hour	4,	and	
applying	 the	 unit	 commitment	 algorithm	 (which	 computes	 the	 ideal	 actions	 of	 this	
	market)	based	on	the	right-most	subcolumn	as	the	expected	wind	power	output.

The	exchanges	that	occur	from	a	simulation	of	the	shifted	subcolumns	model	how	the	
ahead	market	dispatch	decisions	would	be	made,	and	these	exchanges	are	the	only	infor-
mation	kept	from	the	first	pass.	They	are	applied	to	the	loads	of	all	areas	to	create	a	new	
set	of	loads	for	the	second	pass.	On	the	second	pass,	the	UC–ED	algorithm	is	run	again,	
but	 it	 can	 be	 seen	 as	 the	 action	 of	 the	 market	 after	 gate	 closure,	 where	 trade	 is	 only	
	possible	internally.

To	summarize,	the	methodology	consists	of	the	following	steps:

	 1.	 Selection	of	the	wind	power	forecast	matrix.
	 2.	 Creation	of	wind	power	time	series	consisting	of	the	selected	forecast	data.
	 3.	 First	simulation	of	 the	UC–ED	and	calculation	of	 international	exchange,	with	

the	wind	power	time	series	as	input.
	 4.	 Adaption	of	the	original	area	load	files	with	the	international	exchange	levels	as	

settled	in	the	first	simulation	run.
	 5.	 Second	simulation	of	the	UC–ED.

It	uses	the	actual	wind	power	as	input,	with	no	extra	international	exchanges	allowed.
For	the	market	design	with	1-h-ahead	gate	closure,	it	is	assumed	that	no	wind	power	

forecast	 errors	 are	 present.	 For	 this	 market	 gate	 closure,	 a	 single	 simulation	 run	 is	

1
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FIGURE 9.15 Forecast	matrix;	for	each	hour	h,	a	forecast	of	15-min	values	with	index	t	(rows)	is	
available,	where	the	first	element	of	every	row	is	the	true	wind	power.	A	rolling	sample	of	a	previ-
ous	hour’s	forecast	(subcolumns)	is	used	to	simulate	information	available	for	different	interna-
tional	gate-closure	times	for	a	given	hour.
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	performed	using	wind	power	data	as	input	and	assuming	that	international	exchange	is	
always	possible.	In	order	to	specifically	consider	wind	power	in	the	Dutch	power	system,	
it	is	assumed	that	wind	power	in	Germany	can	be	predicted	very	well;	that	is,	there	are	
no	wind	power	forecast	errors	present	at	market	closure,	regardless	of	the	international	
market	gate	closure.

9.6   Case Study for the Netherlands with 12 GW 
Wind Power

This	case	study	shows	how	the	commitment	and	dispatch	logic	and	realistic	 inputs	as	
discussed	in	this	chapter	can	be	combined	and	applied	to	quantify	the	technical,	eco-
nomic,	and	environmental	impacts	of	wind	power	scenarios	for	the	Netherlands.	System	
variants	 that	are	expected	to	shape	these	outcomes	are	explored	 in	numerous	simula-
tions.	The	base	simulation	variants	consider	seven	levels	for	wind	power	capacity	installed	
in	the	Netherlands,	four	designs	of	international	markets	and	three	wind	power	forecast	
methods.	Three	solutions	for	increasing	wind	power	integration	are	also	examined.

9.6.1  Details and Discussion of System Variants

For	 all	 base	 variants,	 it	 is	 assumed	 that	 wind	 power	 is	 integrated	 into	 the	 system	 by	
	taking	 into	 account	 wind	 power	 in	 the	 optimization	 of	 the	 UC–ED	 of	 conventional	
	generation	 capacity.	 In	 case	 no	 international	 exchange	 market	 is	 available,	 only	 the	
Dutch	conventional	generation	units	are	used.	All	base	simulations	were	carried	out	for	
six	wind	power	penetration	levels	and	for	a	0-MW	wind	power	variant	to	be	used	as	a	
reference.

9.6.1.1  International Exchange

International	exchange	is	modeled	and	simulated	for	four	market	designs:

•	 No	international	exchange
•	 International	market	gate-closure	time	day	ahead
•	 International	market	gate-closure	time	3	h	ahead
•	 International	market	gate-closure	time	1	h	ahead

In	the	base	case,	the	Netherlands	is	seen	as	an	isolated	power	system.	International	
exchange	with	Belgium,	France,	Germany,	Norway,	and	Great	Britain	is	assumed	to	be	
zero	at	all	times.	This	variant	serves	as	a	reference	to	consider	the	integration	of	wind	
power	 in	 the	 Dutch	 power	 system	 using	 the	 technical	 capacities	 available	 in	 the	
Netherlands	only.

The	other	market	designs	all	comprise	international	exchange	possibilities	between	
the	Netherlands	and	its	neighbors,	but	using	different	gate-closure	times.	This	means	
that	the	imports	and	exports	of	the	Netherlands	are	optimized	using	the	wind	power	
forecast	available	at	market	gate	closure,	using	the	first	pass	of	the	UC–ED	algorithm.	
After	market	gate	closure,	the	international	exchange	schedules	become	fixed	and	are	
executed	 as	 scheduled	 (second	 pass	 UC–ED).	 For	 the	 day-ahead	 (12–36	h)	 market	
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	closure,	 wind	 power	 forecast	 errors	 are	 significant.	 This	 will	 result	 in	 a	 suboptimal	
scheduling	of	imports	and	exports	from	a	wind	power	integration	point	of	view.	Forecast	
errors	will	have	decreased	by	about	50%	if	market	gate	closure	is	delayed	up	to	3	h	ahead	
of	operation,	and	no	forecast	errors	are	present	for	the	market	design	with	near-real-
time	 operation	 (1	h	 ahead),	 which	 allows	 an	 optimal	 scheduling	 of	 international	
exchange	considering	wind	power.

9.6.1.2  Wind Power Forecasts

The	following	wind	power	forecasts	are	considered	as	base-case	variants:

•	 0-MW	wind	power	forecast	(fuel	saver	approach	[30])
•	 Best	available	forecast
•	 Perfect	forecast

For	the	0-MW	wind	power	forecast,	the	UC–ED	is	optimized	without	incorporating	
wind	power	capacity	in	the	planning	stage,	although	actual	wind	power	output	is	taken	
into	account	in	the	operational	stage.	This	forecast	leads	to	an	over-commitment	of	con-
ventional	generating	capacity	and	 serves	as	a	worst-case	planning	 situation.	The	best	
available	forecast	comprises	an	hourly	update	of	the	wind	power	forecast	(“rolling	fore-
cast”),	on	the	basis	of	updated	wind	power	forecasts	using	the	current	row	of	the	forecast	
matrix,	and	a	subsequent	recalculation	of	the	UC–ED	taking	these	into	account.	For	a	
perfect	forecast,	the	actual	wind	power	levels	are	exactly	known	in	all	stages	of	the	UC–
ED.	It	is	important	to	note	that,	for	all	wind	power	forecasts,	the	real-time	wind	power	
output	level	is	assumed	to	be	exactly	known	and	used	as	an	input	for	economic	dispatch	
in	the	following	hours.	Furthermore,	 it	 is	assumed	that	UC–ED	is	continuously	opti-
mized	up	until	the	hour	of	operation	(1	h	ahead).

9.6.1.3  Flexibility, Thermal and Electrical Storage

Technical	limits	to	the	system	integration	of	wind	power	in	the	power	system	may	be	
revealed	by	a	UC–ED	analysis.	Different	alternatives	for	overcoming	these	integration	
limits	have	been	evaluated	as	system	variants	of	the	case	study.	More	flexible	base-load	
generation	capacity	may	provide	additional	technical	space	for	wind	power	during	low-
load,	 high-wind	 situations.	 For	 this	 alternative,	 the	 commitment	 status	 of	 selected	
industrial	CHP	units	was	changed	from	must-run	to	economic.	The	existing	heat	boil-
ers	could,	in	principle,	take	over	the	generation	of	steam	for	the	industrial	processes	at	
times	 when	 the	 CHP	 is	 shut	 down	 to	 allow	 a	 further	 integration	 of	 wind	 power.	
Industrial-scale	energy	storage,	often	proposed	to	play	the	same	role,	exists	in	several	
forms	including	surface	and	underground	pumped	accumulation	energy	storage,	and	
compressed	air	energy	storage.	The	former	two	units	can	be	readily	modeled,	as	was	
explained	in	Section	9.3.2.	The	latter	type	of	unit	is	modeled	as	a	high-efficiency	CCGT	
[31].	Finally,	creating	additional	interconnection	capacity	between	the	Netherlands	and	
the	 hydropower-dominated	 system	 of	 Norway	 is	 another	 way	 of	 gaining	 technical	
space.	In	this	study,	the	option	of	extra	interconnection	capacity	is	regarded	as	a	stor-
age	option.	No	specific	attempt	was	made	to	optimize	the	design	of	the	energy	storage:	
the	energy	storage	capacities	and	reservoir	sizes	applied	 in	Reference	[32]	have	been	
adopted	here.
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9.6.1.4  Summary

Simulations	are	performed	for	seven	wind	power	penetrations	from	0	to	12	GW	in	incre-
ments	 of	 2	GW	 each,	 four	 international	 market	 designs	 (no	 international	 exchange,	
international	market	gate	closure	at	24,	3,	and	1	h	ahead)	and	three	cases	for	wind	power	
forecasts	(best	available/rolling	forecast,	perfect	prediction	of	wind	power,	0-MW	wind	
power	forecast).	Furthermore,	solutions	for	wind	power	integration	are	explored:	flexi-
ble	CHP	units,	surface	and	underground	pumped	accumulation	energy	storage,	com-
pressed	air	energy	storage,	and	a	dedicated	transmission	connection	to	Norway.

9.6.2  Assumptions and Simulation Setup

The	UC–ED	is	calculated	using	the	equal	marginal	cost	method	elaborated	in	Section	
9.5,	in	which	the	objective	function	is	the	total	cost	for	generating	both	heat	and	power	
given	in	Equation	9.10.	A	calculation	of	unit	dispatch	is	performed	hourly	using	the given	
load	profile	and	an	estimation	of	the	wind	power	production	levels.	This	recalculation	of	
the	UC–ED	is	in	fact	much	more	frequent	than	presently	applied	by	Dutch		generation	
portfolio	owners,	who	usually	do	this	two	to	four	times	a	day.	It	can	also	be	noted	that	a	
central	optimization	of	the	UC–ED	does	not	take	into	account	the behavior	of	individ-
ual	market	parties	or	generation	clusters	on	the	electricity		market	(i.e.,	fuel	contracts,	
individual	reserve	power	considerations).	The	availability	of	a better	wind	power	fore-
cast	may	be	very	beneficial	for	the	market	operating	strategy	of	traders	and	leads	to	sig-
nificant	 revenues.	 Here,	 only	 the	 opportunities	 of	 wind	 power	 forecasts	 for	 the	
maximization	of	the	system	integration	of	wind	power	are	considered.

Fuel	and	emission	costs	have	been	determined	on	the	basis	of	price	forecasts	stated	in	
Reference	[33]	for	the	year	2015.	The	prices	for	coal,	lignite,	gas,	oil,	and	uranium,	and	
CO2	 used	 in	 the	 example	 are	 2.00,	 1.36,	 5.00,	 10.50,	 and	 1.00	€/GJ,	 and	 25.00	€/ton,	
respectively.	Emission	costs	are	 included	in	the	calculation	of	the	marginal	operating	
cost	of	each	thermal	generation	unit.	The	sensitivity	of	the	simulation	results	to	these	
assumptions	are	very	small	regarding	technical	limits	for	wind	power	integration,	but	
are	considerable	for	operating	cost	and	emissions.	The	simulation	results	for	these	two	
are,	therefore,	only	a	first-order	estimate,	and	are	reported	only	relative	to	the	base	case.

9.6.3  Simulation Outcomes

9.6.3.1  Load, Wind Power, and Conventional Generation Dispatch

Figure	9.16	provides	an	overview	of	the	dispatch	of	units	in	the	Netherlands	during	1	
week	for	the	scenario	with	12	GW	wind	power.	The	graph	shows	generation	levels	for	
distributed	generation,	thermal	units,	integrated	wind	power,	and	the	amount	of	wasted	
wind	energy.

Wasted	 wind	 means	 wind	 power	 that	 could	 not	 be	 integrated	 due	 to	 technical	
constraints.

Total	generation	by	conventional	thermal	generation	units	follows	the	system	load,	
distributed	generation,	and	wind	power.	In	this	particular	week,	wind	power	is	ramped	
down	at	moments	of	high	wind	power	and	 low	 load	 (all	nights,	 except	Sunday	when	
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there	is	little	wind	power	available)	to	prevent	minimum	load	problems.	A	good	example	
of	the	use	of	thermal	generation	for	balancing	the	combined	variations	of	load	and	wind	
power	can	be	seen	on	early	Sunday	morning	(when	thermal	generation	ramp	up	and	
wind	power	is	decreasing).

In	Figure	9.17,	the	change	in	annual	electricity	output	between	different	generation	
technologies	is	shown	for	the	Netherlands	(no	international	exchange)	with	increasing	
wind	 power	 capacity.	 Nuclear	 power,	 being	 a	 full-load	 must-run	 technology,	 is	 not	
affected	by	wind	power	integration.	Wind	power	does	reduce	the	full-load	hour	equiva-
lents	of	coal-fired	units,	CCGT	CHP	and	CCGT.	Importantly,	the	profits	of	these	units	
also	decrease	during	the	hours	that	they	are	in	operation,	as	wind	power	always	replaces	
the	most	expensive	unit	in	operation	(as	far	as	technically	feasible).	Because	of	the	large	
share	of	coal-fired	generation	in	the	Dutch	generation	park	modeled	in	this	example,	the	
electricity	generation	(TWh/y)	of	coal	is	reduced	most.

Notably,	 the	 technical	 flexibility	 of	 coal,	 CCGT	 CHP,	 and	 CCGT	 does	 not	 require	
additional	operating	hours	of	peak-load	gas	turbines	for	wind	power	integration.	DG	(in	
this	 case	 gas	 engines	 found	 in	 greenhouses)	 decreases	 its	 operation	 hours	 only	 very	
slightly:	the	must-run	part	is	fixed,	and	the	flexible	units	produce	heat	and	power	during	
other	periods,	with	the	heat	being	stored.

On	a	relative	scale,	the	output	of	CCGT	is	affected	most	by	the	integration	of	wind	
power:	CCGT	operates	only	during	medium-	and	peak-load	hours,	during	which	it	is	
often	the	marginal	technology	and,	therefore,	the	first	to	be	replaced	by	wind	power.	As	
coal	and	CCGT	CHP	have	a	part-load	must-run	status,	the	integration	of	wind	power	
reduces	their	output	only	to	a	certain	extent.

9.6.3.2  Scenarios for International Exchange

In	 case	 international	 exchange	 is	 possible,	 the	 integration	 of	 wind	 power	 in	 the	
Netherlands	influences,	in	principle,	the	exchanges	between	all	countries.	In	Figure	9.18,	

20

16

12

8

4

0
Monday Tuesday Wednesday

Sy
st

em
 lo

ad
, g

en
er

at
io

n 
(G

W
h/

h)

Thursday Friday Saturday Sunday

Wasted wind Wind power Conventional generation + Exchange System load
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imports	and	exports	are	shown	for	each	of	the	areas	originally	introduced	in	Figure	9.14,	
with	each	bar	representing	a	wind	power	penetration	scenario.	Clearly,	the	Netherlands	
increases	 its	 annual	 exports	 and	 decreases	 its	 imports	 in	 case	 more	 wind	 power	 is	
installed.	This	influences	mainly	imports	and	exports	of	Germany	and	Great	Britain,	and	
Belgium	to	a	limited	extent.	Due	to	the	presence	of	large	interconnection	capacity	between	
Germany	and	the	Netherlands,	the	Dutch	wind	power	decreases	not	only	the	full-load	
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hours	of	base-load	coal	and	lignite	in	Germany,	but	also	the	hours	of	some	CCGT.	Wind	
power	furthermore	reduces	the	exports	of	base-load	coal	power	from	Belgium	and	to	a	
lesser	extent	from	France	during	periods	of	 low	load	(nights	and	weekends).	Germany	
reduces	 its	 imports	 from	France	at	 times	of	high	wind	 in	 the	Netherlands.	Exchanges	
with	Norway	stay	constant	in	volume	since	it	is	modeled	as	such,	although	the	moments	
of	exports	and	imports	are	increasingly	determined	by	wind	power	as	its	installed	capac-
ity	in	the	Netherlands	increases.	These	results	clearly	show	the	importance	of	the	larger	
German	system	for	the	integration	of	wind	power	in	the	Dutch	system.

9.6.3.3  Operating Cost Savings

Figure	9.19	 shows	 the	annual	 savings	 in	operating	cost	due	 to	wind	power,	 for	 the	
Netherlands	with	and	without	international	exchange.	The	outcome	for	a	1-h-ahead	
market	gate-closure	time	for	the	Northwest	European	system	as	a	whole	is	shown	as	
a	solid	line,	and	for	the	Dutch	system	as	a	dotted	line.	The	figure	shows	that	operating	
cost	savings	by	wind	power	increase	with	the	amount	of	wind	power	installed.	For	
the	fuel	and	operating	costs	assumed	here,	the	overall	annual	operating	cost	savings	
by	 wind	 power	 are	 estimated	 to	 be	 in	 the	 order	 of	 1.5	 billion	 euros	 annually	 for	 a	
12-GW	wind	power	capacity.	The	slight	differences	in	total	cost	savings	between	an	
isolated	Dutch	system	and	a	Northwest	European	system	are	due	to	a	different	gen-
eration	mix	in	which	wind	power	is	integrated.	Thus,	the	base-case	with	0	MW	wind	
power	 is	 already	 	different	 with	 respect	 to	 marginal	 costs.	 Differences	 in	 total	 cost	
savings	 with	 and	 without	 international	 exchange	 at	 high	 wind	 power	 penetrations	
are	due	to	the	wasting	of	wind	in	an	isolated	Dutch	system	(additional	fuel	cost	and	
emissions).

In	case	no	international	exchange	is	possible	for	exports	of	excess	wind	power,	the	
relative	 cost	 savings	 gained	 from	 wind	 power	 start	 to	 decrease	 from	 8	GW	 installed	
capacity	onwards.

Limits	 in	 the	 operational	 flexibility	 of	 conventional	 plants	 lead	 to	 suboptimal	 dis-
patch,	 reduced	 operating	 efficiencies,	 and,	 ultimately,	 increased	 wasting	 of	 available	
wind	resources.	Some	 improvement	 is	possible	 for	 the	 isolated	system	when	different	
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technologies	 are	 introduced,	 as	 shown	 in	 Figure	 9.20.	 However,	 such	 savings	 are	 but	
small	improvements	over	the	base	cost	savings	from	wind	power.

In	case	 the	Netherlands	 is	part	of	an	 international	Northwest	European	market,	 the	
technical	 integration	 limits	 for	wind	power	 lie	 further	away	 (highest	 line,	Figure	9.19).	
Because	more	wind	power	can	be	integrated	in	a	Northwest	European	system,	the	operat-
ing	cost	savings	are	greater	than	for	an	isolated	Dutch	system,	where	wind	power	must	
instead	be	wasted.	In	an	international	environment,	slightly	over	one	half	of	the	total	eco-
nomic	benefit	of	wind	power	is	realized	in	the	Netherlands,	the	rest	is	realized	in	neighbor-
ing	areas.

Operating	 costs	 are	 also	 influenced	 by	 wind	 power	 forecasts.	 However,	 savings	 in	
operating	cost	as	a	result	of	the	use	of	wind	power	predictions	differ	between	weeks	and	
are	in	the	order	of	0.2%	of	the	total	operating	cost	per	year.	Application	of	the	best	avail-
able	 wind	 power	 forecast,	 however,	 does	 not	 save	 operating	 costs	 for	 each	 operation	
hour.	Over-predictions	of	wind	power	may	lead	to	an	under-commitment	of	base-load	
units:	when	the	wind	power	falls	short	compared	to	the	forecast,	extra	units	must	be	
committed	at	a	higher	cost.	Therefore,	at	times	choosing	the	0-MW	wind	power	forecast	
would	 be	 cheapest,	 and	 the	 choice	 is	 related	 to	 the	 quality	 of	 the	 forecast.	 The	 extra	
improvement	 that	 could	 come	 from	 applying	 0	MW	 and	 the	 best	 available	 forecast	
methods	at	different	times	throughout	the	week	(i.e.,	from	choosing	among	options	of	
an	“ensemble	forecast”)	is	an	additional	integration	of	1	TWh	or	2.4%	of	available	wind	
energy	for	a	12-GW	installed	wind	power	capacity,	compared	to	using	the	best	available	
forecast	only.	However,	this	would	be	difficult	in	practice.	Summarizing,	improved	wind	
power	forecasts	have	some	benefit	for	system	operation	(wasted	wind,	operating	cost)	
but	little	influence	on	the	total	amount	of	wasted	wind	energy.	From	a	technical	point	of	
view,	 a	 frequent	 update	 of	 the	 UC–ED	 using	 real-time	 information	 on	 wind	 power	
together	 with	 the	 application	 of	 updated	 wind	 power	 forecasts	 is	 sufficient.	 It	 can	 be	
noted	that	the	benefits	of	improved	wind	power	forecasts	for	trading	on	markets	are	not	
considered	here.	Such	benefits	may	be	significant	for	the	individual	market	parties	for	
the	formulation	of	their	market	trading	strategy	[34].
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9.6.3.4  Emissions Reduction

The	 simulation	 results	 clearly	 show	 that	 wind	 power	 leads	 to	 a	 saving	 of	 significant	
amounts	of	CO2	emissions.	In	Figure	9.21,	the	annual	emission	savings	are	shown	for	the	
Netherlands	without	international	exchange,	and	for	the	Northwest	European	system	as	
a	whole	(international	exchange	is	possible	in	this	case),	with	the	Dutch	part	of	that	as	a	
dotted	line.	Emission	savings	are	estimated	to	lie	around	19	Mton	annually	for	12	GW	
wind	power,	with	higher	savings	for	the	isolated	Dutch	system	due	to	the	large	share	of	
coal	in	the	generation	mix.	In	case	international	exchange	is	possible,	more	expensive,	
less	efficient	units	(mainly	CCGT)	have	already	been	pushed	out	of	the	market	at	0	MW	
wind	power.	Wind	power	will	also	replace	more	expensive	CCGT	generation	during	the	
day	rather	than	coal-fired	units	in	the	isolated	Dutch	system,	resulting	in	lower	emission	
savings	for	the	cases	with	international	exchange.	It	can	be	noted	that	emission	savings	
also	positively	impact	operating	costs,	as	CO2	emission	savings	are	part	of	the	total	oper-
ating	cost.	The	change	in	steepness	of	the	curves	at	2-	and	6-GW	installed	wind	power	
capacity	 is	due	 to	 the	higher	capacity	 factor	of	offshore	wind	power.	For	 the	 isolated	
Dutch	system,	there	is	a	change	at	8	GW	wind	power	due	to	the	increasing	amounts	of	
wasted	 wind	 energy.	 The	 results	 for	 emission	 savings	 for	 SO2	 and	 NOx	 show	 similar	
trends	 as	 CO2.	 Total	 annual	 emissions	 show	 an	 estimated	 decrease	 of	 11	Mton	 and	
20	kton	for	SO2	and	NOx,	respectively,	for	an	isolated	Dutch	system.

The	results	also	show	that	the	emissions	reduction	benefits	of	the	three	technological	
solutions	 are	 very	 limited.	 Figure	 9.22	 shows	 that,	 for	 all	 energy	 storage	 scenarios,	
emissions	savings	resulting	 from	these	 technologies	are	much	smaller	 than	 the	 total	
emissions,	or	the	differences	between	international	exchange	scenarios.	Also,	for	levels	
of	wind	power	below	8	GW,	emissions	are	actually	increased.	The	additional	emission	
of	CO2	can	be	explained	by	two	factors.	First,	it	must	be	understood	that	energy	storage	
is	operated	to	minimize	system	operating	cost,	within	the	technical	constraints	of	the	
system.	For	cost	optimization,	the	storage	reservoirs	are	filled	when	prices	are	low,	to	
be	emptied	for	generating	electricity	when	prices	are	high.	In	the	Dutch	system,	energy	
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storage	in	fact	substitutes	peak-load	gas-fired	production	by	base-load	coal-fired	pro-
duction.	Since	coal	emits	about	twice	as	much	CO2,	on	a	megawatt-hour	basis,	as	gas,	
the	net	coal-for-gas	substitution	by	energy	storage	increases	the	overall	amount	of	CO2	
emitted	by	 the	Dutch	system.	Second,	energy	storage	brings	about	conversion	 losses	
that	must	be	compensated	by	additional	generation	from	thermal	units,	which	again	
increases	CO2	emissions,	especially	as	this	is	also	done	by	coal-fired	units,	being	the	
cheapest	option.	It	follows	that	for	the	system	and	assumptions	applied	in	this	research,	
from	a	CO2	perspective,	energy	storage	is	an	environmentally	friendly	option	only	for	
very	high	wind	penetration	levels,	when	energy	storage	prevents	wasted	wind.	The same	
is	the	case	for	an	extra	interconnector	to	Norway	operated	as	assumed	here.

Notably,	the	use	of	heat	boilers	not	only	saves	operating	costs	but	also	CO2	emissions.	
Since	the	use	of	heat	boilers	at	CHP	locations	specifically	tackles	the	minimum	load	
problem	as	a	result	of	CHP	unit	operating	constraints,	heat	boilers	reduce	the	amount	
of	wasted	wind.	As	the	CO2	emissions	of	boilers	and	wind	power	are	lower	than	CO2	
emissions	of	CHP	units,	boilers	reduce	the	overall	amount	of	CO2	emitted	by	the		system	
as	well.

9.6.3.5  Wasted Wind

In	Figure	9.23,	wind	energy	integrated	into	the	Dutch	power	system	is	shown	for	differ-
ent	wind	power	penetrations	and	different	market	designs.	Wasted	wind	energy	becomes	
significant	 in	 the	 range	 of	 6-	 to	 8-GW	 installed	 wind	 power	 capacity	 for	 the	 Dutch	
power	system,	in	the	market	design	without	international	exchange.	The	slight	change	in	
steepness	 of	 the	 available	 wind	 energy	 curve	 at	 2-	 and	 6-GW	 installed	 wind	 power	
capacity	is	due	to	an	increased	capacity	factor	of	wind	power	(offshore	vs.	onshore).	The	
use	of	international	exchange	provides	significant	additional	space	for	the	integration	of	
wind	power	(middle-gray	area	 is	additionally	 integrated	wind	energy).	The	 light	gray	
area	representing	wasted	wind	in	a	1-h-ahead	market	gate	closure	is	very	small	and	not	
visible	in	this	figure.
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In	Figure	9.24,	the	amount	of	wasted	wind	energy	for	all	five	integration	improvement	
options	can	be	observed.	Clearly,	all	options	considered	here	reduce	the	amount	of	wind	
wasted	 in	 the	 Netherlands	 due	 to	 minimum-load	 problems.	 Energy	 storage	 and	 heat	
boilers	increase	the	flexibility	of	the	Dutch	system	and	thereby	enable	larger	amounts	of	
wind	 energy	 to	 be	 integrated.	 An	 extra	 interconnection	 to	 Norway	 creates	 a	 virtual	
energy	 storage	 with	 the	 same	 effects.	 When	 considering	 an	 isolated	 Dutch	 system,	
pumped	accumulation	energy	storage	has	the	highest	potential	of	all	storage	options	for	
reducing	the	amount	of	wasted	wind.	An	extra	interconnector	to	Norway	would	provide	
a	similar	potential	for	this,	 if	 it	could	be	used	as	assumed	here.	However,	none	of	the	
energy	storage	options	 is	 sufficient	 to	prevent	wasted	wind	energy	altogether.	 In	case	
international	exchange	is	possible	with	a	1-h-ahead	market	gate	closure,	wasted	wind	
energy	is	reduced	much	more	than	using	any	of	the	integration	improvement	options	
investigated	here.

Figure	9.25	focuses	further	on	a	comparison	of	the	amount	of	wasted	wind	energy	for	
different	market	designs.	Only	wind	power	forecast	errors	in	the	Netherlands	are	con-
sidered	here.	In	case	no	interconnection	capacity	is	available	for	balancing	purposes,	an	
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estimated	amount	 of	 6.2	TWh/y	or	15%	of	 available	wind	 energy	 in	 the	Netherlands	
cannot	be	integrated	into	the	system.	In	case	international	exchanges	can	be	used	for	
exports	at	high	wind	power	levels,	additional	wind	power	can	be	integrated,	with	only	
0.05	TWh	or	0.1%	of	available	wind	energy	being	wasted	for	the	1-h-ahead	market	gate	
closure.

Interestingly,	 a	 day-ahead	 or	 3-h-ahead	 international	 market	 gate-closure	 time	
results	in	larger	amounts	of	wasted	wind	power	at	smaller	wind	power	capacities.	This	
is	the	result	of	the	methodology	applied	for	the	optimization	of	international	exchange	
at	market	gate	closure,	which	is	based	on	the	assumption	that	all	feasible	international	
transactions	are	being	made.	In	case	a	significant	wind	power	forecast	error	is	present	
at	the	moment	that	these	transactions	become	fixed,	scheduled	imports	may	prevent	
the	integration	of	unpredicted	surpluses	of	wind	power,	leading	to	larger	amounts	of	
wasted	wind	energy.	For	large	wind	power	penetrations,	however,	the	benefits	of	inter-
national	 exchange	 capacity	 outweigh	 the	 disadvantage	 of	 forecast	 errors.	 Clearly,	 a	
more	conservative	scheduling	of	international	exchanges	(less	imports)	will	result	in	
less	wasted	wind	energy.	This	result	illustrates	the	benefits	of	postponed	international	
market	gate-closure	times	for	integrating	wind	power.

In	case	interconnection	capacity	is	available	and	the	market	design	allows	an	adjust-
ment	of	international	exchange	up	until	the	moment	of	operation	(1-h-ahead	interna-
tional	market	gate	closure),	the	potential	for	additionally	integrated	wind	energy	is	high.	
Still,	even	the	most	flexible	international	market	design	cannot	prevent	a	small	amount	
of	wasted	wind	energy,	starting	from	8-	to	10-GW	installed	wind	power	capacity	in	the	
Netherlands	(bottom	of	Figure	9.25,	not	visible	 in	Figure	9.23).	The	reason	 for	 this	 is	
that,	even	though	international	transmission	capacity	may	be	sufficient,	this	capacity	is	
not	always	fully	available	for	exports.	This	applies	to	Germany	in	particular.	Germany	
has	a	significant	must-run	conventional	generation	capacity	and	a	large	amount	of	wind	
power	(32	GW	in	 the	year	2014)	 that	 is	highly	correlated	(0.73)	 to	wind	power	 in	 the	
Netherlands.	Both	 factors	 reduce	 the	possibilities	 for	 export	of	wind	power	 from	 the	
Netherlands,	especially	during	critical	periods.
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The	 different	 types	 of	 wind	 power	 forecasts	 only	 have	 a	 minor	 influence	 on	 the	
amount	of	wasted	wind	energy	on	an	annual	basis.	Figure	9.26	shows	the	amount	of	
wasted	 wind	 energy	 for	 several	 weeks	 for	 the	 12-GW	 wind	 power	 variant,	 with	 no	
international	 exchange	 allowed.	 Interestingly,	 some	 differences	 are	 present	 in	 the	
amount	 of	 wasted	 wind	 between	 0	MW	 and	 the	 best	 available	 forecast	 method.	 The	
simulation	results	show	that	an	over-commitment	of	conventional	generation	capacity	
may	be	beneficial	for	wind	power	integration	during	some	hours	of	the	week.	Generally,	
however,	the	differences	in	wasted	wind	between	the	0-MW	wind	power	forecast,	the	
best	available	wind	power	forecast,	and	the	perfect	forecast	are	small	(<<5%	of	wasted	
wind	energy).	This	can	be	explained	by	the	frequent	recalculation	of	the	UC–ED	that	is	
applied	to	all	simulations,	which	allows	the	inclusion	of	the	real-time	wind	power	out-
put	and	of	 regularly	updated	wind	power	 forecasts.	As	actual	wind	power	 levels	are	
accurately	 known	 and	 wind	 power	 output	 generally	 does	 not	 change	 significantly	
between	15-min	intervals,	the	conventional	generation	units	in	operation	will	typically	
be	adequate	 for	 the	next	 time	 interval	as	well,	explaining	 the	relatively	good	perfor-
mance	of	the	0-MW	wind	power	forecast.

9.7  Conclusions

Analysis	of	UC–ED	is	an	important	tool	for	assessing	the	effect	of	wind	power	in	large	
power	systems.	Many	factors	that	determine	the	cost	and	emissions	of	a	power	system	
are	properly	combined	in	such	an	approach.	This	is	crucial	to	obtaining	realistic	results.	
From	the	results	shown	in	this	chapter,	it	is	undeniable	that	absolute	emissions	of	CO2	
are	 significantly	 reduced	 with	 the	 installation	 of	 wind	 power.	 Operating	 costs	 of	 the	
system	are	also	reduced	due	to	fuel	and	emissions	pricing.

In	this	chapter,	a	simple	but	effective	way	of	representing	international	trade	in	a	UC–
ED	analysis	 by	using	a	wind	power	 forecast	matrix	 was	described.	 International	 and	
interregional	markets	are	becoming	more	flexible,	and	this	means	the	approach	of	con-
sidering	a	continuously	updated	forecast	will	only	become	more	relevant	in	the	future.	
The	 analysis	 for	 different	 penetrations	 of	 wind	 power	 has	 indicated	 that	 last-minute	
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gate-closure	times	will	allow	the	integration	of	more	wind	energy	by	reducing	the	impact	
of	imperfect	wind	forecasts.	However,	the	effect	of	forecasts	on	wasted	winds	and	opera-
tion	costs	was	relatively	small	for	the	case	where	the	Dutch	power	system	was	isolated.	
In	this	example,	international	exchange	clearly	affected	the	technical	limits	on	integrat-
ing	wind	power	in	the	Netherlands.	It	follows	that	when	significant	wind	generation	is	
deployed	in	a	neighboring	power	system,	the	technical	limits	to	wind	integrations	can	
shift	in	both	countries.	This	observation	is	a	crucial	one	for	settings	like	Europe	where	
nuclear	phase-out	and	wind	farm	construction	are	proceeding	in	some	jurisdictions.

For	the	system	studied	in	this	chapter,	limits	to	integration	were	posed	by	high	wind,	
low	load	situations.	This	underlines	the	importance	of	having	accurate	daily	patterns	for	
wind	power	information.	From	a	cost	and	emissions	perspective,	it	was	interesting	to	
note	that	international	exchange	was	a	much	more	effective	technological	solution	for	
increasing	 the	 amount	 of	 wind	 power	 than	 was	 storage,	 and	 that	 among	 the	 storage	
options	the	use	of	heat	boilers	was	most	effective	for	reducing	emissions.
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10.1  Introduction

The	evolution	of	power	 systems	 is	being	deeply	 influenced	by	 the	growing	need	 for	
enhancing	 energy	 saving	 and	 cutting	 carbon	 dioxide	 (CO2)	 emissions	 from	 energy	
generation	 in	 order	 to	 meet	 challenging	 environmental	 targets	 set	 by	 governments	
worldwide.	In	this	context,	the	perspective	of	increasing	energy	efficiency	and	envi-
ronmental	performance	on	the	generation	side	is	boosting	the	interest	toward	deploy-
ing	integrated	energy	systems	and	combined	production	of	different	energy	vectors.	
In	 this	 respect,	multigeneration	 (MG)	can	be	defined	as	 the	production	of	multiple	
energy	vectors	such	as	electricity,	heat,	cooling,	and	so	on,	from	a	unique	source	of	
fuel	 (Mancarella	 and	 Chicco,	 2009a).	 Such	 an	 approach	 can	 bring	 energy,	 environ-
mental,	and	economic	benefits	with	respect	to	a	classical	approach	where	energy	vec-
tors	are	produced	in	separate	production.

As	the	“base”	and	more	traditional	case	of	MG,	cogeneration	or	combined	heat	and	
power	 (CHP)	plants	allow	more	efficient	 fuel	energy	 input	utilization	with	 respect	 to	
classical	 separate	 production	 whereby	 electricity	 is	 generated	 in	 centralized	 power	
plants	and	heat	in	traditional	boilers	(Horlock,	1997;	Martens,	1998).	Depending	on	the	
characteristics	of	the	CHP	plant	and	of	the	separate	production	references,	CHP	higher	
overall	efficiency	can	thus	bring	energy	savings	along	with	CO2	emission	reduction,	also	
depending	on	 the	 fuel	carbon	content	and	on	 the	emission	 intensity	of	 the	displaced	
sources	(Horlock,	1997;	Chicco	and	Mancarella,	2008b).

CHP	system	operability	can	be	significantly	affected	by	low	thermal	loads	in	the	sum-
mertime,	when	the	need	for	space	heating	is	generally	not	present	and	only	domestic	hot	
water	makes	up	the	thermal	demand.	Hence,	 the	CHP	unit,	 sized	on	the	basis	of	 the	
winter	thermal	demand,	could	operate	at	partial	load	and	often	be	switched	off	below	a	
certain	 loading	threshold,	 losing	all	or	at	 least	part	of	 the	benefits	 from	cogeneration	
production.	Further	decisions	on	operating	the	CHP	system	could	depend	on	economic	
aspects	 (energy	prices	 set	up	on	 the	basis	of	contracts	or	within	energy	markets),	 for	
instance	leading	to	switch	the	CHP	unit	off	during	the	night	because	of	low	electricity	
prices	making	it	unprofitable	to	sell	electricity	to	the	grid.

The	presence	of	cooling	requirements	paves	the	way	to	adopt	combined	cooling,	heat,	
and	power	(CCHP)	or	trigeneration	(Borbely	and	Kreider,	2001;	Heteu	and	Bolle,	2002;	
Hernandez-Santoyo	and	Sanchez-Cifuentes,	2003;	Chicco	and	Mancarella,	2006;	Ziher	
and	Poredos,	2006).	In	this	case,	a	typical	application	is	to	exploit	cogenerated	heat	for	
cooling	 production	 by	 means	 of	 a	 water	 absorption/adsorption	 refrigerator	 group	
(WARG)	(Maidment	and	Prosser,	2000;	Minciuc	et al.,	2003).	Hence,	in	a	CCHP	plant,	
the	CHP	prime	mover	can	be	operated	at	high	loading	level	also	in	the	summertime,	
contributing	to	cover	an	air-conditioning	demand	that	 is	steadily	rising	even	in	mild	
climate.

A	 more	 general	 approach	 to	 trigeneration	 has	 been	 recently	 put	 forward	 as	 well	
(Chicco	and	Mancarella,	2009a;	Mancarella	and	Chicco,	2009a),	where	a	number	of	dif-
ferent	 solutions	 for	electricity	and	heat	can	be	coupled	 to	 the	CHP	system,	 including	
classical	 compression	 electric	 refrigerator	 group	 (CERG),	 electric	 heat	 pump	 (EHP),	
engine-driven	 chiller	 (EDC),	 engine-driven	 heat	 pump	 (EDHP),	 and	 gas	 absorption	
heat	pump	(GAHP).	Hence,	such	CCHP	plants	can,	in	turn,	be	seen	as	a	particular	case	



10-3Operational Optimization of Multigeneration Systems

of	the	more	general	category	of	distributed	multigeneration	(DMG)	systems	(Chicco	and	
Mancarella,	2009a)	enabling	the	dispatch	of	different	types	of	energy	and	the	conversion	
from	one	type	of	energy	to	another	through	suitably	sized	components,	with	other	pos-
sible	external	networks	for	further	exploitation	of	the	energy	products.

The	authors	have	illustrated	and	discussed	DMG	concepts	and	applications	in	recent	
references,	following	a	research	line	developed	to	highlight	the	perspectives	and	assess	
the	 potential	 of	 DMG	 applications,	 in	 terms	 of	 both	 energy	 efficiency	 improvement	
(Chicco	 and	 Mancarella,	 2007a,b)	 and	 environmental	 impact	 reduction	 (Chicco	 and	
Mancarella,	2008b;	Mancarella	and	Chicco,	2008,	2010),	up	to	the	formulation	of	a	uni-
fied	approach	to	define	structured	indicators	to	quantify	the	technical	and	environmen-
tal	performance	of	MG	systems	(Chicco	and	Mancarella,	2008a).	Relatively	decentralized	
solutions	for	generation	of	different	energy	vectors	can	be	effectively	integrated	within	a	
number	of	contexts.	Above	all,	the	applications	in	urban	areas	are	of	particular	interest,	
owing	 to	 wide	 availability	 of	 adequate	 loads	 in	 case	 aggregated	 through	 district	 net-
works	(Calì	and	Borchiellini,	2004;	Danny	Harvey,	2006),	as	well	as	of	incumbent	large-
scale	energy	networks	such	as	for	gas	and	electricity.	 In	addition,	new	energy	vectors	
could	play	a	key	role	for	the	development	of	future	energy	systems,	such	as	hydrogen	
owing	to	its	characteristics	of	being	transported	over	long	distances	(like	electricity)	and	
of	being	stored	(in	a	relatively	easier	way	than	electricity).

While	development	of	MG	solutions	can	represent	a	fundamental	milestone	in	the	
evolution	of	future	energy	systems,	assessment	of	such	systems	requires	powerful	tools	
and	methodologies	from	different	viewpoints,	particularly	economic	and	environmen-
tal	ones.	In	addition,	different	timescales	and	purposes	can	be	considered	when	opti-
mizing	MG	systems.

Analysis	and	optimization	of	MG	systems	can	be	addressed	with	reference	to	differ-
ent	time	frames.	Considering	the	time	frames	in	descending	order	of	their	duration,	it	is	
possible	to	synthetically	identify:

•	 Long-term	 time	 frame,	 with	 multiyear	 duration,	 including	 strategic	 problems	
(e.g.,	referring	to	investments	or	sustainable	energy	development)	or	design	prob-
lems	linked	to	the	choice	of	the	most	convenient	technological	solution	among	a	
set	of	predefined	planning	alternatives.

•	 Short-term	time	frame,	which	can	be	further	partitioned	into	an	operation	times-
cale,	indicatively	ranging	from	1	min	to	1	week,	serving	as	the	basis	for	the	formu-
lation	of	operational	problems	that	can	span	up	to	an	annual	time	horizon,	and	a	
real-timescale,	 indicatively	 ranging	 from	 seconds	 to	 minutes	 to	 represent	 the	
dynamics	 of	 various	 nature,	 mainly	 related	 to	 the	 electrical	 side	 including	 the	
action	of	control	systems,	but	also	to	atmospheric	(sun,	wind),	chemical	(e.g.,	for	
battery	storage	and	fuel	cells),	and	economic	(real-time	pricing)	aspects.

In	this	context,	this	chapter	deals	with	optimization	of	MG	systems	in	the	short-term	
operation	timescale.	The	formulation	and	application	of	various	approaches	presented	in	
the	 literature	 are	 summarized	 to	 provide	 a	 synthetic	 view	 of	 how	 optimization	 is	
addressed	(with	different	objective	functions	and	constraints)	and	solved	(with	different	
computational	 approaches).	 In	 particular,	 operational	 optimization	 can	 be	 seen	 as	 a	
	specific	 problem,	 as	 well	 as	 part	 of	 a	 more	 comprehensive	 combined	 optimization	 of	
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MG system	planning	and	operation;	for	instance,	to	simultaneously	perform	the	selec-
tion	of	the	most	convenient	planning	alternative	together	with	its	operational	schedule,	
as	for	instance	in	Burer	et al.	(2003),	Cardona	et al.	(2006a),	Kavvadias	et al.	(2010).	This	
chapter	assumes	that	the	technological	choices	have	already	been	made	by	the	decision-
maker,	and	focuses	only	on	detailed	operational	aspects	that	can	indicatively	range	from	
minutes	to	a	week,	serving	as	the	basis	for	the	formulation	of	operational	problems	that	
can	span	up	to	an	annual	time	horizon.

Besides	energy	efficiency,	the	optimization	aspects	analyzed	include	both	economic	
and	environmental	issues,	and	are	thus	naturally	orientated	toward	multiobjective	opti-
mization.	In	this	respect,	classical	economic	objective	functions	such	as	for	cost	mini-
mization	 or	 profit	 maximization	 can	 be	 more	 or	 less	 conflicting	 with	 environmental	
objectives	of	local	dimension	(for	instance,	for	pollution	control)	or	of	global	dimension	
such	as	primary	energy	resources	conservation	or	greenhouse	gas	(GHG)	emission	con-
trol.	Suitable	formulations	of	objective	functions	and	constraints,	as	well	as	of	perfor-
mance	criteria,	are	outlined	in	this	work.

The	contents	of	this	chapter	are	organized	as	follows.	Section	10.2	recalls	the	struc-
tures	and	characteristics	of	MG	components.	Section	10.3	addresses	the	different	types	
of	objective	functions	for	single-objective	and	multiple-objective	optimizations.	Section	
10.4	illustrates	various	constraints	that	can	be	encountered	in	the	formulation	of	MG	
operational	 optimization	 problems.	 Section	 10.5	 summarizes	 the	 solution	 techniques	
used	in	various	applications.	Section	10.6	presents	an	illustrative	example	of	operational	
optimization	of	a	trigeneration	system.

10.2  MG Components and Structures

10.2.1  MG Components and Operational Characteristics

Representation	of	MG	components	for	formulation	of	optimization	problems	is	a	chal-
lenging	 task	 requiring	 a	 suitable	 modeling	 framework.	 A	 convenient	 formulation	 is	
based	 on	 a	 black-box approach	 (Horlock,	 1997;	 Mancarella,	 2006;	 Mancarella	 and	
Chicco,	2009a)	whereby	the	input–output	characteristics	of	individual	pieces	of	equip-
ment	 are	 represented	 through	 synthetic	 efficiency	 models,	 without	 describing,	 for	
instance,	thermodynamic	details	of	the	plant.	This	approach	is	consistent	with	classical	
representation	of	electricity-only	power	plants,	where	the	fuel	input	is	typically	expressed	
as	a	polynomial	function	of	the	electricity	output.	In	addition,	such	a	representation	is	
synthetic	 and	 effective	 at	 the	 same	 time,	 limiting	 the	 number	 of	 variables	 used	 to	
describe	the	energy	flows	of	individual	components	and	of	the	overall	plant,	while	hold-
ing	 sufficient	 information	 for	 technoeconomic	 characterization.	 As	 illustrated	 below,	
sets	of	components	can	be	aggregated	into	equivalent	black	boxes	and	the	whole	plant	
can,	in	turn,	be	seen	as	a	black	box	for	network	interaction	(Geidl	and	Andersson,	2007a;	
Chicco	and	Mancarella,	2009b).

Focusing	on	the	most	 typical	end-use	energy	vectors,	namely,	electricity,	heat,	and	
cooling	(trigeneration	systems),	an	MG	plant	can	be	composed	of	a	number	of	different	
units,	ranging	from	CHP	systems	to	heat-fired	generators	(for	both	heating	and	cooling)	
as	well	as	electrothermal	technologies.
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Regarding	 CHP	 prime	 movers,	 microgenerators	 at	 the	 household	 level	 typically	
include	 internal	 combustion	 engines	 and	 Stirling	 engines	 (Onovwiona	 and	 Ugursal,	
2006;	Kuhn	et al.,	2008),	whereas	larger	prime	movers,	up	to	relatively	large-scale	CHP	
for	district	energy	networks,	also	include	microturbines	and	gas	turbines.	Natural	gas	is	
the	most	widespread	fuel,	although	biomasses	and	biogas	represent	an	important	option	
for	clean	development.	Cluster	operation,	for	instance	for	microturbines,	could	ensure	
higher	operational	flexibility,	but	raises	the	issue	of	taking	into	account	the	partial-load	
microturbine	 characteristics,	 in	 terms	 of	 energy	 efficiency	 reductions	 and	 pollutant	
emissions	increase	at	partial	load	(Boicea	et al.,	2009).

Let	us	adopt	a	black-box	representation	of	CHP	systems,	in	which	the	terms	W,	Q,	and	
F	denote	electricity,	heat,	and	fuel	thermal	energy,	respectively,	whereas	the	superscript	
y	points	out	cogeneration	entries.	For	the	purposes	of	 the	models	presented	here,	 the	
energy	vectors	appearing	in	the	definition	of	performance	indicators	can	indicate	both	
power	(i.e.,	average	power	in	a	given	time	interval)	and	energy.	The	CHP	system	is	char-
acterized	by	its	energy	performance	indicators	(first	law	efficiencies)	such	as	the	electri-
cal	 efficiency	 ηW 	 and	 the	 thermal	 efficiency	 ηQ 	 (output-to-input	 energy	 ratios).	
Furthermore,	an	 important	cogeneration	characteristic	 linking	electricity	and	heat	 is	
the	heat-to-electricity	(or	heat-to-power)	cogeneration ratio	 λ y 	(Horlock,	1997).	These	
quantities	are	defined	as
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The	specific	models	of	 the	performance	 indicators	can	be	developed	with	different	
levels	 of	 detail,	 from	 constant	 values	 to	 part	 load-dependent	 linear	 or	 polynomial	
approximations,	depending	on	the	type	and	purpose	of	the	study.	For	the	sake	of	exem-
plification,	constant	values	will	be	adopted	here.

The	most	widespread	technologies	for	heat/cooling	generation	include:

•	 Auxiliary	boiler	(AB),	providing	thermal	back	up	to	the	CHP	system	and/or	used	
to	top	up	the	heat	production	to	cover	thermal	peak	loads.

•	 CERG	(Voorspools	and	D’haeseleer,	2003;	Danny	Harvey,	2006),	where	the	input	
is	 electricity	W	 to	power	an	electrical	 compressor	and	 the	output	 is	 cooling	R,	
typically	in	the	final	form	of	chilled	water	or	cooled	air.	Some	options	are	available	
where	the	condensing	temperature	can	be	raised	to	allow	heat	to	be	recovered	at	a	
temperature	useful	 for	other	purposes,	 although	 this	usually	 implies	 a	drop	 in	
efficiency	in	the	cooling	production.

•	 Water	 absorption/adsorption	 refrigeration	 group	 (WARG)	 (Tozer	 and	 James,	
1998;	Kreider,	2001;	Danny	Harvey,	2006;	Deng	et al.,	2011),	where	heat	Q	at	dif-
ferent	enthalpy	levels	(for	instance,	in	the	form	of	hot	water,	steam,	or	exhausts,	
specifically	depending	on	the	equipment)	is	used	as	input	to	a	so-called	thermo-
chemical	compressor	to	generate	cooling	energy	R.	In	particular,	adsorption	chill-
ers	 are	 emerging	 as	 viable	 alternatives	 to	 absorption	 chillers,	 above	 all	 for	
exploiting	low-temperature	waste	heat,	for	instance,	from	solar	energy,	for	resi-
dential	applications.	Again,	heat	recovery	options	may	be	available.
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•	 Gas	absorption	refrigeration	group	(GARG)	(Kreider,	2001;	Wu	and	Wang,	2006),	
direct-fired	by	gas	whose	thermal	content	F	is	transformed	into	cooling	R	again	
through	an	equivalent	thermochemical	compression.

•	 Engine-driven	chiller	(EDC)	(Danny	Harvey,	2006;	Lazzarin	and	Noro,	2006),	for	
which	a	conventional	compression	chiller	is	driven	by	a	mechanical	compressor	
directly	connected	to	the	shaft	of	an	engine;	again,	the	energy	input	is	represented	
by	fuel	thermal	content	F,	and	the	output	is	cooling	energy	R.	Heat	can	be	recov-
ered	at	a	particularly	high	value,	by	extracting	energy	from	the	exhausts	of	the	
driving	engine.

•	 EHP	of	different	types	(e.g.,	ground	source,	water	source,	air	source,	and	so	on),	
where	electricity	W	 is	 input	 to	extract	“free”	heat	available	 in	 the	environment	
and	provide	end-use	heat	Q	at	a	higher	temperature	than	the	environment.	EHPs	
can	also	be	used	to	enhance	the	enthalpy	level	of	waste	heat,	for	instance,	recov-
ered	 from	 WARG	 (Chicco	 and	 Mancarella,	 2007b)	 or	 CERG,	 and	 are	 usually	
reversible	machines	that	can	be	used	as	chillers.

•	 Engine	driven	heat	pump	(EDHP)	and	absorption	heat	pump	(AHP),	where	again	
the	output	is	heat	Q	and	the	input	can	be	fuel	thermal	energy	F	in	a	combustion	
engine	driving	a	mechanical	heat	pump	(EDHP),	or	heat	Q	into	the	AHP	(Danny	
Harvey,	2006;	Lazzarin	and	Noro,	2006;	Costa	et al.,	2007).

In	addition,	other	technologies	can	be	used	within	MG	systems	for	various	purposes.	
For	instance,	dedicated	systems	can	be	coupled	to	the	CHP	plant	for	desalination,	desic-
cant,	or	dehumidification	effects,	as	well	as	chemical	products	used	in	specific	processes	
(Liu	et al.,	2004;	Uche	et al.,	2004;	Wang	and	Lior,	2007;	Badami	and	Portoraro,	2009).	
Also,	extending	 the	scope	beyond	conventional	 trigeneration,	hydrogen	 is	envisaged	to	
play	an	important	role	in	the	future,	with	several	solutions	such	as	local	production	for	
instance	from	natural	gas	or	from	electrolysis,	storage,	further	distribution	to	other	plants,	
direct	use	for	specific	processes	or	for	transportation,	and	so	forth	(Hemmes	et al.,	2007).

In	terms	of	black-box	modeling,	as	for	CHP	systems,	the	above	cooling/heating	com-
ponents	can	be	modeled	as	input–output	energy	performance	indicators.	For	instance,	
for	cooling	generation	equipment,	the	most	used	performance	indicator	is	the	coefficient	
of	performance	(COP),	generally	defined	as	output	(cooling	energy	R)	 to	 the	relevant	
input	 depending	 on	 the	 specific	 component;	 for	 instance,	 electrical	 energy	 W	 for	 a	
CERG,	thermal	energy	Q	for	a	WARG,	fuel	thermal	energy	F	from	an	EDC,	and	so	forth	
(Mancarella	and	Chicco,	2009a):

	
COP COP COPCERG WARG EDC= = =

R
W

R
Q

R
F; ;

	
(10.2)

Other	components	can	be	modeled	similarly,	while	heat	recovery	from	a	chiller	can	
also	 be	 modeled	 through	 specifically	 built	 indicators.	 Hence,	 it	 is	 clear	 how	 multiple	
energy	vectors	actually	need	to	be	modeled	at	an	individual	component	level,	besides	the	
overall	MG	plant.	An	effective	way	to	formalize	the	black-box	approach	to	consider	mul-
tiple	input	and	output	energy	vectors	at	a	component	level	is	by	introducing	a	matrix	
notation.	More	specifically,	considering	the	set	Y	containing	equipments	or	components	
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belonging	to	the	MG	system,	the	black	box	of	each	component	Y	∈	Y	can	be	described	
by	an	efficiency matrix	with	the	relevant	performance	indicators	in	positions	to	oppor-
tunely	model	the	flow	connections	between	input	and	output.	Let	us	denote	the	general	
form	of	an	efficiency	matrix	for	an	individual	component	Y	as	HY.	The	corresponding	
output-to-input	relationship	is	written	as	(Chicco	and	Mancarella,	2008c,	2009b):

	 v H vo
Y Y

i
Y= ⋅ 	 (10.3)

where	vo
Y 	is	the	array	containing	the	relevant	output	vectors	and	v i

Y 	the	relevant	inputs	
for	 the	component	Y.	For	 instance,	 if	we	consider	 four	energy	vectors	(with	the	same	
types	of	ordered entries	for	both	inputs	and	outputs),	namely,	F,	W,	Q,	and	R,	in	a	trigen-
eration	plant,	and	we	identify	the	entries	of	HY	by	means	of	a	two-letter	subscript,	with	
the	 first	 letter	 referring	 to	 the	 output	 energy	 vector	 and	 the	 second	 one	 to	 the	 input	
energy	vector,	we	can	write
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(10.4)

An	extension	to	the	overall	MG	plant	is	described	in	Section	10.2.2.2.

10.2.1.1  Energy Loads

An	MG	system	is	purposely	built	to	supply	different	loads,	the	most	common	types	of	
which	are	electricity,	heat,	and	cooling.	In	general,	different	time	resolutions	and	analy-
sis	window	could	be	applied	depending	on	the	specific	study.	The	steady-state	types	of	
analysis	object	of	this	work	assume	that	the	real-time	dynamics	have	already	reached	
their	equilibrium.	Hence,	hourly	or	half-hourly	resolution	is	typically	considered	suffi-
cient	to	capture	the	variations	involved	in	economic	(energy	prices)	and	environmental	
(emission	factors,	see	Section	10.3.2.2)	parameters.	In	terms	of	load	modeling	and	data	
availability,	usually	there	is	much	more	information	available	for	electrical	loads	(even	
with	granularities	of	seconds,	sometimes)	than	for	thermal	loads	(for	which	information	
is	sometimes	available	only	on	an	integral	energy	basis	with	daily	or	even	longer	resolu-
tions).	To	decrease	the	computational	burden,	characteristic	days	can	be	simulated	to	
represent	 the	 typical	 seasonality	 levels	 that	 occur	 in	 terms	 of	 thermal	 and	 electrical	
demand,	by	simulating	for	instance	weekdays	and	weekend	days	in	winter,	summer,	and	
intermediate	periods.

10.2.1.2  Local Generators and Control Strategies

At	the	individual	component	level,	in	the	case	of	equipment	with	single	input	and	out-
put,	control	strategies	are,	in	general,	not	an	issue,	and	the	typical	operation	is	to	follow	
the	demand	of	the	output	energy	vector.	Hence,	heat/cooling	generation	equipment	are	
operated	under	heat/cooling	following	mode.	For	instance,	if	heat	needs	to	be	provided	
by	 an	 EHP,	 the	 heat	 requirements	 are	 satisfied	 by	 supplying	 the	 needed	 electricity.	
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This  corresponds	 to	 having	 direct	 transformation	 from	 the	 output	 (end-use)	 energy	
	vectors	 into	 input	 energy	 vectors,	 with	 energy	 shifting	 properties	 (Mancarella,	 2009)	
according	to	the	relevant	performance	indicator	model.	On	the	other	hand,	the	presence	
of	MG	at	an	individual	component	level	or	for	the	overall	plant	introduces	significant	
additional	complexity	to	the	above	reasoning.	The	most	important	example	is,	of	course,	
that	of	a	CHP	system	producing	both	electricity	and	heat	and	which	can	therefore	be	
operated	under	a	heat-following	or	electricity-following	mode.

More	specifically,	under	thermal load tracking	(TLT)	mode	(also	called	thermal	load	
following	or	heat	tracking	mode)	the	CHP	generator	follows	the	thermal	load,	and	elec-
tricity	is	produced	accordingly	(regardless	of	the	actual	local	load),	as	resulting	from	the	
characteristics	cogeneration	ratio	in	Equation	10.1.	This	is	assumed	to	be	the	“classical”	
strategy	for	CHP,	which	maximizes	the	environmental	effectiveness	of	cogeneration	with	
no	heat	waste,	whereas	positive	or	negative	electricity	local	generation/load	imbalances	
are	made	up	through	grid	connection.	Thus,	it	is	important	to	highlight	that,	from	the	
electrical	outlook,	CHP	in	TLT	mode	may	be	considered	as	uncontrolled	generation.

On	the	other	hand,	under	electrical load tracking	(ELT)	mode	(also	called	electrical	load	
following	or	electricity	tracking	mode)	the	CHP	generator	follows	the	local	electrical	load,	
and	heat	is	produced	accordingly	(regardless	of	the	actual	thermal	load),	again	as	resulting	
from	 the	 characteristics	 cogeneration	 ratio.	 Such	 a	 strategy	 may	 typically	 be	 used	 to	
	minimize	the	energy	to	be	sold	back	to	the	grid	when	this	is	not	economically	convenient,	
or	to	minimize	the	network	impact	from	“uncontrolled”	generation	in	TLT	mode.	In	this	
case,	an	AB	is	assumed	to	be	put	in	operation	to	supply	the	thermal	load	if	the	thermal	
production	is	not	sufficient.	On	the	other	hand,	if	the	cogenerated	heat	is	higher	than	the	
actual	local	thermal	demand,	heat	is	wasted.	Therefore,	either	because	additional	boiler	
production	 is	 needed,	 or	 because	 heat	 production	 is	 wasted,	 the	 ELT	 strategy	 brings	
smaller	environmental	benefits	relative	to	thermal	load	following.	Hence,	also	for	model-
ing,	it	is	important	to	highlight	that	the	actual	useful	heat	Qu	may	be	different	from	the	
overall	cogenerated	heat	Qy	defined	above,	as	also	further	discussed	in	Section	10.2.2.2.	
Thermal	energy	storage	can	be	an	effective	option	to	minimize	heat	waste.

Besides	classical	output	following	strategies	or	their	hybrid	versions	(Kavvadias	et al.,	
2010;	Mago	et al.,	2010),	optimal	operational	strategies	can	be	put	forward	whereby	a	
given	objective	is	pursued.	The	definition	of	two	types	of	operational	strategies	(primary	
energy	reduction	or	CO2	emission	reduction)	for	the	CHP	in	a	trigeneration	system	that	
supplies	a	building	is	addressed	in	Fumo	et al.	(2009).	The	CHP	system	operates	when	its	
primary	energy	(or	CO2	emissions,	respectively)	is	lower	than	that	in	separate	produc-
tion.	In	the	primary	energy	reduction	strategy,	further	criteria	are	defined	to	run	the	
CHP	also	in	other	cases.

Specific	strategies	can	be	formulated	to	minimize	the	plant	operational	cost	or	maxi-
mize	its	revenues.	In	this	case,	optimization	based	on	spark	spread	(SS)	figures	can	be	
quite	simple	to	represent	and	solve,	as	discussed	in	Section	10.3.2.3.	However,	such	opti-
mization	schemes	require	a	certain	level	of	flexibility	enabled	in	the	CHP	plant	by	addi-
tional	components	such	as	AB	or	thermal	storage.	Similarly,	the	economic	optimization	
of	 an	 overall	 MG	 system	 can	 become	 significantly	 more	 complex	 when	 taking	 into	
account	 coproduction	 from	 other	 equipment,	 as	 shown	 in	 Porteiro	 et  al.	 (2004)	 and	
Cardona	et al.	(2006a)	in	the	presence	of	a	CHP–EHP	combined	scheme.
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10.2.1.3  Network Interfaces

Interconnection	among	various	MG	plants	allows	optimal	management	of	portfolios	
of	resources.	On	the	other	hand,	interconnections	with	energy	distribution	networks,	
such	as	gas	distribution	system	(GDS),	electrical	distribution	system	(EDS),	district	
heating/cooling	networks,	and	so	forth,	introduce	further	components	to	be	managed	
in	 the	 study	 of	 optimal	 operational	 strategies.	 These	 mainly	 refer	 to	 taking	 opti-
mal decision	for	buying/selling	gas,	electricity,	heat,	and	so	on,	according	to	the	rules	
for	energy	provision	(depending	on	the	tariff	system	or	market	structure	referring	to	
the	different	energy	vectors).	A	situation	 that	 is	 envisaged	 to	occur	more	and	more	
	frequently	is that	of	coordinated	MG	plants	belonging	to	the	same	energy	district	(in	
case	of 	private	property)	and	managed	by	the	same	energy	company.	In	this	case,	spe-
cific	 objectives	 can	 be	 pursued	 by	 optimizing	 the	 MG	 operation	 within	 the	 local	
system.

An	 alternative,	 more	 likely	 and	 more	 challenging	 situation	 is	 that	 of	 a	 set	 of	 MG	
plants	managed	in	a	coordinated	way	and	interconnected	through	public	(or	different	
owners’)	networks.	In	terms	of	modeling,	while	the	individual	components	can	be	mod-
eled	as	black	boxes,	the	whole	MG	plant	itself	can	be	modeled	in	a	similar	way	to	link	the	
end	user’s	energy	flows	to	the	plant	energy	inputs.	In	the	same	fashion,	it	is	possible	to	
model	the	interactions	among	different	MG	plants,	each	of	which	is	seen	as	a	black	box	
through	input–output	equivalent	energy	efficiencies	(see	Section	10.2.2.2).	This	repre-
sentation	is	also	consistent	with	the	energy hub	approach	(Geidl	et al.,	2007;	Geidl	and	
Andersson,	2007b;	Krause	et al.,	2011),	as	an	MG	plant	can	be	interpreted	as	an	energy	
hub	with	multiple	energy	interactions	at	input	and	output.

10.2.1.4  Storage

MG	system	operation	can	potentially	be	improved	by	the	possibility	of	storing	energy	
under	 different	 forms,	 also	 depending	 on	 the	 economics	 of	 storing	 different	 types	 of	
energy.	 Currently,	 the	 cheapest	 option	 is	 to	 store	 thermal	 energy,	 particularly	 in	 the	
form	 of	 heat	 (for	 instance,	 hot	 water),	 whereas	 storing	 electricity	 is	 quite	 expensive.	
Hence,	thermal	storage	is	widespread	in	MG	applications,	particularly	to	decouple	the	
generation	of	electricity	and	heat	from	the	CHP	unit	from	the	energy	requirements.	In	
these	cases,	the	thermal	storage	allows	the	creation	of	an	energy	buffer	to	be	profitably	
deployed	for	 load	shifting,	 for	 instance,	providing	preheating	to	smooth	the	morning	
heat	 generation	 ramp	 and	 limit	 its	 peak	 value.	 On	 the	 other	 hand,	 electricity	 can	 be	
transformed	and	stored	under	different	forms	if	more	convenient,	for	instance,	as	heat	
produced	through	EHPs	or	hydrogen	produced	through	electrolysis.	These	options	will	
be	more	and	more	relevant	for	both	economic	and	environmental	purposes	in	the	pres-
ence	of	cheap	and	clean	electricity	produced	by	renewable	energy	sources	such	as	wind	
or	photovoltaic	power.	In	addition,	storage	systems	in	MG	plants	can	support	firming	up	
of	renewable	energy	sources	that	are	often	highly	variable	and	unpredictable	(Geidl	and	
Andersson,	2007b;	Koeppel	and	Korpås,	2008).

From	a	modeling	point	of	view,	in	analogy	to	the	above	component	matrices	it	is	pos-
sible	to	introduce	the	storage	coupling	matrix	S,	which	generally	describes	how	changes	
of	the	stored	energies	affect	the	MG	output	flows	(Geidl,	2007).
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10.2.2  MG Plant Structures

10.2.2.1  Connection Schemes

The	different	components	forming	an	MG	system	can	be	connected	according	to	differ-
ent	 schemes.	 Focusing	 again	 on	 CCHP	 systems,	 it	 is	 possible	 to	 conceive	 two	 basic	
schemes	 with	 reference	 to	 the	 utilization	 of	 the	 energy	 produced	 by	 the	 CHP	 side,	
namely	(Mancarella,	2006;	Mancarella	and	Chicco,	2009a):

•	 Parallel generation:	 Cogenerated	 heat	 and	 electricity	 are	 used	 to	 directly	
	supply  the	 user’s	 needs,	 and	 are	 not	 used	 to	 fire	 other	 devices	 for	 further	
	production.	Therefore,	cooling	can	be	generated	for	instance	through	a	GARG	or	
an	EDC.

•	 Bottoming generation:	Cogenerated	heat	and/or	electricity	are	used	to	supply	cas-
caded	equipment	for	further	production;	therefore,	heat	can	be	used	for	instance	
to	 supply	 a	 WARG	 for	 cooling	 production,	 and	 electricity	 to	 generate	 cooling	
through	 a	 CERG	 or	 heat	 through	 an	 EHP.	 An	 example	 of	 bottoming	 schemes	
(Chicco	and	Mancarella,	2008d)	is	reported	in	Figure	10.1.

For	 modeling	 purposes,	 plant	 component	 connections	 and	 relevant	 energy	 flows	
among	components	internal	to	the	plant	need	to	be	conveniently	described.	An	effec-
tive	approach	to	describe	the	connections	among	the	component	black	boxes	and	with	
the	external	energy	networks	is	to	introduce	a	connectivity	matrix	(Geidl	et al.,	2007;	
Geidl	 and	 Andersson,	 2007b;	 Chicco	 and	 Mancarella,	 2009b)	 that	 accounts	 for	 the	
plant	topology.	In	addition,	for	optimization	and	definition	of	control	strategies,	time-
domain	energy	flows	can	be	modeled	through	properly	defined	dispatch factors	or	split-
ting	ratios	(Valero	and	Lozano,	1997;	Shivakumar	and	Narasimhan,	2002;	Grekas	and	
Frangopoulos,	2007)	that	are	usually	part	of	the	decision	variables	set.	A	dispatch	fac-
tor	can	be	defined	as	the	relative	amount	of	an	energy	vector	at	flow	splitting	points	
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FIGURE 10.1 Combined	cooling,	heat,	and	power	system	with	bottoming	schemes.
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(bifurcations)	 to	 supply	 different	 components.	 Hence,	 for	 energy	 conservation,	 the	
	following	properties	hold:

	 i.	 The	number	of	dispatch	factors	originated	from	the	same	energy	vector	at	a	bifur-
cation	is	equal	to	the	number	of	split	flows	from	that	vector	minus	1;	hence,	the	
sum	of	the	dispatch	factors	originated	from	the	same	energy	vector	must	be	equal	
to	unity.

	 ii.	 Each	dispatch	factor	is	limited	between	0	and	1.

10.2.2.2  Black-Box Representations

According	 to	 the	above	discussion,	MG	plant	components	can	 individually	be	 repre-
sented	through	black	boxes	characterized	by	performance	indicators	suitably	arranged	
in	matrix	 form	(component efficiency matrix)	 to	 take	 into	account	 the	multiplicity	of	
energy	vectors	that	can	be	relevant	to	MG.	In	addition,	a	connectivity	matrix	and	dis-
patch	factors	can	be	used	to	model	the	topological	aspects	of	the	plant	and	the	energy	
flow	interaction	internal	and	external	to	the	plant.	Within	this	framework,	and	through	
geometric	rules	and	algorithms	(Chicco	and	Mancarella,	2009b),	the	overall	plant	repre-
sentation	can	be	reduced	to	a	black	box	characterized	by	a	plant efficiency matrix	that	
synthesizes	plant	interconnection	and	energy	flow	description.	As	mentioned	earlier	for	
the	single	components,	this	output-to-input black-box	approach	is	synthetic	and	effec-
tive	at	the	same	time,	limiting	the	number	of	variables	used	to	describe	the	plant	energy	
flows,	but	holding	sufficient	information	to	have	a	clear	picture	of	the	plant.

Focusing	again	on	a	trigeneration	system	to	exemplify	the	approach,	let	us	consider	
the	CCHP	system	shown	in	Figure	10.2,	where	the	CHP	prime	mover	is	sided	by	an	AB	
and	the	bottoming	cooling	plant	is	composed	of	both	a	WARG	and	a	CERG.	Input	ener-
gies	 are	 fuel	 Fi	 from	 the	 GDS	 and	 electricity	 Wi	 from	 the	 EDS.	 Dispatch	 factors	 are	
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FIGURE 10.2 Black-box	representation	of	a	combined	cooling,	heat,	and	power	system.
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indicated	with	α,	with	superscripts	indicating	the	origin	of	the	relevant	energy	flow	and	
subscripts	indicating	the	type	of	energy	output	on	which	the	dispatch	factors	are	defined;	
this	is	consistent	with	the	matrix	representation	of	the	individual	components.

The	useful	heat	Qu	is	not	directly	represented	among	the	input	or	output	entries,	as	it	
appears	explicitly	only	once	in	the	mathematical	model,	so	that	it	can	be	calculated	a 
posteriori	from	the	system	solution	as	Q Qu

Q
y y= α .

By	putting	together	the	component	matrices,	taking	into	account	their	connections,	
the	overall	MG	plant	can	be	represented	as

	 v H vo i= ⋅ 	 (10.5)

where	vo	is	the	array	of	the	ordered	output	energy	vectors	(Fo,	Wo,	Qo,	and	Ro)	and	v i	is	
the	array	of	the	ordered	input	energy	vectors	(Fi,	Wi,	Qi,	and	Ri).	Clearly,	null	entries	are	
used	if	the	corresponding	energy	vector	does	not	appear	in	the	system	representation.

By	direct	inspection	of	all	the	MG	plant	energy	flows	in	Figure	10.2,	and	taking	into	
account	the	efficiency	characteristics	of	 the	 individual	plant	components	(namely,	ηW	
and	ηQ 	 for	 the	CHP,	ηt 	 for	 the	AB,	and	COPWARG	and	COPCERG	 for	 the	chillers),	 the	
output-to-input	efficiency	matrix	for	the	overall	MG	plant	can	be	expressed	as
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From	Equation	10.6,	it	can	be	appreciated	that	availability	of	manifold	components	
and	interconnections	allows	a	certain	degree	of	freedom	in	the	way	that	demand	can	be	
satisfied,	 which	 poses	 the	 basis	 for	 developing	 and	 solving	 an	 optimization	 problem.	
More	specifically,	if	we	consider	the	following	set	of	dispatch	factors
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⎣
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⎦α α α α α αF W

y
Q Q Q
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W

GDS CHP AB EDS
T

	
(10.8)

they	can	be	selected	as	representative	of	the	energy	flow	in	the	plant,	and	constitute	the	
decision	variables	of	an	optimization	problem	together	with	the	input	electricity	Wi	and	
fuel	Fi.	This	will	be	extensively	dealt	with	in	the	following	sections.	
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10.3  Objective Functions for MG Optimization

10.3.1  Formulations of the Operational Optimization Problems

Operational	optimization	of	an	MG	system	is	run	by	considering	a	given	set	of	equip-
ment	 with	 assigned	 size,	 to	 identify	 the	 possible	 control	 strategy	 according	 to	 a	
	predefined	objective	function	(or	multiple	objective	functions).	Operational	optimiza-
tion	can	be	used	as	an	inner	loop	within	a	design	or	planning	procedure.	In	this	case,	
the	 type	 and	 size	 of	 the	 equipment	 are	 chosen	 among	 predefined	 alternatives	 in	 an	
outer	loop,	and	the	inner	loop	returns	the	operational	conditions	in	which	each	alter-
native	exhibits	its	best	performance.

Different	 classes	 of	 problems	 can	 be	 identified	 on	 the	 basis	 of	 the	 nature	 of	 the	
	phenomena	 to	 be	 analyzed.	 Two	 specific	 aspects	 pertain	 to	 the	 time	 domain	 and	 to	
the information	domain.

The	first	aspect	is	linked	to	the	typical	partitioning	of	the	total	time interval	of anal-
ysis	(e.g.,	1	year)	into	subintervals	of	specific	duration	(e.g.,	1	h).	A	basic	classification,	
with	a	heavy	 impact	on	 the	problem	 formulation	and	on	 the	choice	of	 the	 solution	
methods,	can	be	made	through	the	distinction	between	decoupled-in-time	(indicated	
here	 as	 DiT)	 and	 coupled-in-time	 (indicated	 here	 as	 CiT)	 problems.	 More	
specifically:

	 i.	 In	 DiT problems,	 it	 is	 considered	 that	 the	 events	 analyzed	 in	 one	 subinterval	
do not	affect	any	other	subinterval.	In	this	case,	the	various	subintervals	are stud-
ied	independently	of	each	other.	Furthermore,	it	 is	possible	to	group	together	a	
number	of	subintervals	regardless	of	the	fact	that	they	can	be	nonsuccessive.	This	
leads	to	the	exploitation	of	the	duration curves,	in	which	the	values	of	the	quantity	
under	analysis	in	the	various	time	intervals	are	simply	sorted	in descending	order.	
The	resulting	duration	curve	can	be	further	simplified	by reducing	the	number	of	
steps	through	the	grouping	of	similar	values	of the 	quantity	under	analysis	into	an	
equivalent	 average	 value,	 as	 for	 instance	 in	 the  	equivalent	 load	 approach	 illus-
trated	in	Mancarella	and	Chicco	(2009b).	If the	integration	of	the	quantity	in	the	
time	 period	 is	 meaningful	 from	 the	 energy	 viewpoint,	 the	 equivalent	 average	
value	 is	 generally	 defined	 in	 such	 a  way	 as	 to	 reproduce	 the	 same	 area	 of	 the	
grouped	quantities.	For	MG	systems,	the	representation	of	the	energy	quantities	
through	their	duration	curves	has the	advantage	of	summarizing	in	a	synthetic	
way	the	overall	energy	need	of each	energy	quantity.	However,	it	has	to	be	taken	
into	account	that	in	the	duration	curve	representation	the	simultaneity	among	the	
various	quantities	is lost,	and	as	such	no	direct	comparison	can	be	made	through	
superposition	of the	duration	curves	of	different	quantities.	A	dedicated	discus-
sion	 on	 the  duration	 curve	 characteristics	 for	 MG	 systems	 is	 provided	 in	
Piacentino	and Cardona	(2008b).	

	 ii.	 In	 CiT problems,	 the	 events	 analyzed	 in	 one	 subinterval	 may	 affect	 the	 other	
	subintervals.	In	this	case,	the	subintervals	must	be	analyzed	by	maintaining	their	
	consecutiveness.	The	coupling-in-time	of	the	subintervals	may	be,	in	general,	due	
to  integral	quantities	or	constraints,	or	 to	operational	constraints	 linked	to	the	
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time evolution	of	some	variables.	For	instance,	it	is	possible	to	identify	the	follow-
ing	aspects:

	 1.	 Limits	on	storage	systems:	Different	types	of	storage,	such	as	hydro,	batteries,	
plug-in	hybrid	electric	vehicles,	heat	and	cooling	storage	systems,	and	so	on,	
have	a	limited	capacity.

	 2.	 Integral limits	on	the	units:	Transients	in	the	thermal	units	are	relatively	long	
(e.g.,	with	respect	to	electrical	transients);	the	design	conditions	of	the ther-
mal	units	are	set	up	for	continuous	operation	and	include	minimum start-up	
and	shutdown	times,	directly	reflecting	on	the	operational 	schedules;	for	sys-
tems	allowing	faster	switch	on/off	operations,	a	maximum	number	of	these	
operations	can	be	introduced	for	maintenance	reasons.

	 3.	 Rate-of-change	limits:	Ramp-rate	limits	depending	on	the	physical	nature	of	
the	energy	provision	can	be	introduced	both	for	thermal	generation	systems	
and	for	some	storage	systems	(e.g.,	battery	discharge	rate).

	 4.	 Cumulative	 constraints	 on	 emissions:	 For	 global	 or	 local	 emissions	 of	 sub-
stances	or	pollutants	 that	 can	 remain	 in	 the	atmosphere	 for	 relatively	 long	
time	periods	(compared	with	the	timescales	of	the	operational	problems	ana-
lyzed),	the	constraint	can	be	set	on	the	cumulative	emissions	on	a	given	period	
of	time;	cumulative	emissions	can	also	be	of	interest	to	address	emission	trad-
ing	schemes	(Rong	and	Lahdelma,	2007;	Tsikalakis	and	Hatziargyriou,	2007;	
Kockar	et al.,	2009).

	 5.	 Provision	of	reserves:	Time	coupling	can	be	relevant	 to	avoid	simultaneous	
unavailability	of	many	units	(for	instance,	due	to	maintenance	reasons),	call-
ing	for	the	introduction	of	reserve	supply	(Kockar	et al.,	2009).

	 6.	 Exploiting	electricity market	prices	as	a	driver:	The	production	 schedules	
from	 different	 units	 can	 be	 adjusted	 to	 follow	 the	 time	 evolution	 of	
	electricity	prices,	with	complex	implications	that	can	be	handled	through	
specific	 	models	 (Makkonen	 et  al.,	 2003;	 Deng	 and	 Jiang,	 2005;	 Carrión	
et al.,	2007).

	 	 The	second	aspect	refers	to	the	nature	of	the	data	available	for	the	study.	In	this	
respect,	it	is	possible	to	consider	deterministic	or	stochastic	optimization,	namely:

	 iii.	 In	deterministic optimization,	each	variable	is	introduced	in	a	deterministic	form	
(or	as	a	predefined	probabilistic	distribution	feature	such	as	average	value,	median,	
mode,	or	a	given	percentile),	and	the	probabilistic	distribution	of	the	results	is	not	
of	interest	as	an	output.

	 iv.	 In	stochastic optimization,	one	or	more	variables	are	introduced	in	probabilistic	
form,	usually	because	the	probability	distribution	of	the	results	is	relevant;	proba-
bilistic	inputs	are	typical	of	atmospheric	variables	(from	sun	or	wind)	and	of	some	
energy	loads,	for	instance,	residential	electricity	loads,	heavily	depending	on	con-
sumers’	lifestyle	(Herman	and	Kritzinger,	1993;	Capasso	et al.,	1994;	Carpaneto	
and	Chicco,	2008).

For	 the	classes	of	problems	 indicated	above,	optimization	 is	 conceptually	different	
when	 a	 single objective	 function	 is	 used	 or	 a	 multiobjective	 problem	 is	 formulated	
(Salgado	and	Pedrero,	2008),	as	discussed	below.
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10.3.1.1  Single-Objective Optimization

Let	us	define	a	vector	x	containing	the	decision	variables	of	the	optimization	problem.	
The	decision	variables	may	include	energy	input	components,	dispatch	factors,	and	in	
the	case	of	storage	also	stored	energy	vectors	in	different	time	intervals.

The	general	formulation	of	the	single-objective	optimization	problem	with	objective	
function	f(x)	to	be	minimized	under	the	equality	constraints	represented	by	the	vector	
function	h(x)	and	the	inequality	constraints	represented	by	the	vector	function	 ψ( )x 	is

	
 x x x

x
, ( ) min ( )f f( ) = { }

	
(10.9)

subject	to

	 h x 0( ) = 	 (10.10)

	 ψ( )x 0≤ 	 (10.11)

where	 x 	is	the	vector	containing	the	values	of	the	decision	variables	corresponding	to	
the	optimal	objective	function	 f ( )x .

A	 single	 objective	 function	 may	 be	 formulated	 for	 a	 problem	 in	 which	 only	 one	
objective	is	of	interest,	or	for	a	multiobjective	problem	in	which	the	various	objectives	
are	merged	into	a	single	objective.	A	single	objective	function	can	be	set	up	also	when	
multiple	objectives	are	prioritized	with	predefined	hierarchical	rules,	introducing	the	
terms	related	to	the	other	objectives	within	associated	boundary	constraints	(Cardona	
et al.,	2006b).

In	the	operational	time	frame,	a	typical	partitioning	of	the	overall	period	of	analysis	
(for	instance,	1	year)	can	be	found	by	considering	s	=	1,	. . .	S	seasons	(e.g.,	winter,	summer,	
and	intermediate)	and	d	=	1,	. . .	D	day	types	(e.g.,	weekdays,	Saturdays,	and	Sundays),	as	
for	instance	done	in	Beihong	and	Weiding	(2006),	Arcuri	et al.	(2007),	and	Carvalho	et al.	
(2011).	Within	each	day,	h	=	1,	. . .,	H	time	intervals	are	considered,	with	duration	�th	for	
the	hth	time	interval,	not	necessarily	corresponding	to	regular	partitioning	of	the	time	
intervals	along	the	day.

Considering	nsd	days	of	type	d	in	season	s	and	indicating	as	F( )x sdh 	a	function	of	the	
decision	variables	to	be	set	up	at	season	s,	for	day	type	d	and	at	time	interval	h,	on	an	
annual	basis	the	optimization	problem	can	be	formulated	as	the	minimization
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(10.12)

In	a	planning	problem,	a	decision	variable	can	contain	a	single	value	to	be	identified	
for	the	whole	period	(e.g.,	the	size	of	an	MG	unit).	In	operational	problems,	a	decision	
variable	could	contain	a	set	of	values	to	be	established	for	each	season,	day	type	and	time	
interval,	to	identify	its	optimal	trajectory	(of	variation	in	time)	in	combination	with	the	
trajectories	of	the	other	decision	variables.
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The	individual	objectives	can	be	of	different	nature,	typically	arising	from	technical,	
environmental,	or	economic	concepts.	Some	examples	are	illustrated	in	Section	10.3.2.

10.3.1.2  Multiobjective Optimization

In	 the	 general	 formulation	 of	 the	 multiobjective	 optimization	 problem	 with	 N	
	objectives	 and	 decision	 variables	 vector	 x,	 the	 objective	 function	 to	 be	 minimized	
becomes	a	vector	type,	that	is,	f(x)	=	{ f1(x),	f2(x),	. . .,	fN(x)},	whereas	the	equality	con-
straints	are	still	represented	by	the	vector	function	h(x)	and	the	inequality	constraints	
by	the	vector	function	ψ( )x .	The	multiobjective	optimization	can	end	up	with	more	
than	one	solution	point,	each	of	which	is	characterized	by	a	different	combination	of	
the	 decision	 variables.	 Considering	 M	 solution	 points,	 the	 formulation	 can	 be	
expressed	as	follows:

	
   x x f x f x f x

x1 1, , , , , min ( )… …M M{ } ( ) ( ){ }( ) = { }
	

(10.13)

subject	to

	 h x 0( ) = 	 (10.14)

	 ψ( )x 0≤ 	 (10.15)

where	  x x1, ,… M{ } 	is	the	set	of	decision	variables	vectors	corresponding	to	the	optimal	
objective	functions	 f x f x 1( ) ( ){ }, ,… M .

In	MG	system	operational	optimization,	the	various	objectives	generally	do	not	lead	
to	the	same	solutions.	Indeed,	it	is	very	likely	to	find	formulations	with	conflicting objec-
tives,	that	is,	optimizing	one	objective	leads	to	worse	solutions	for	other	objectives,	as	for	
instance	the	reduction	of	the	operational	costs	and	the	reduction	of	the	local	emissions.	
The	occurrence	of	conflicting	objectives	calls	for	modifying	the	approach	to	operational	
optimization.	 Some	 decision-making	 could	 be	 needed,	 for	 instance,	 according	 to	 the	
following	categorization	(Mavrotas	et al.,	2007):

•	 A priori	decision-making,	in	which	priorities	or	preferences	among	the	objectives	
or	specific	goals	are	established	beforehand.

•	 Interactive	decision-making,	in	which	successive	phases	of	calculation	and	deci-
sion	are	alternated	in	order	to	drive	the	search	toward	the	most	preferred	solution;	
however,	the	decisions	affect	the	trajectory	of	evolution	of	the	solutions	and	may	
reduce	the	breadth	of	the	solution	space	analyzed.

•	 A posteriori	decision-making,	 in	which	a	number	of	compromise	 solutions	are	
calculated	before	identifying	the	preferred	solution.

On	these	bases,	multiobjective	formulations	of	two	different	kinds	can	be	identified:

	 1.	 Transformation	of	the	multiple	objectives	into	a	single objective:	The	transforma-
tion	 is	 typically	 formulated	 by	 resorting	 to	 a	 weighted	 sum	 of	 the	 objectives,	
assuming	a	set	of	weights	that	carry	the	twofold	goals	of	making	the	numerical	
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values	of	the	objectives	more	uniform	(also	providing	compensation	of	the	effects	
of	 using	 different	 measuring	 units)	 and	 of	 establishing	 preferences	 among	 the	
objectives.

	
F( ) ( )x xsdh sdh=

=
∑w fj j

j

N

1 	
(10.16)

	 	 with	positive	weighting	factors	w1,	.	.	.,	wN,	whose	sum	can	be	in	case	constrained	
to	unity.

If	the	multiple	objectives	are	not	conflicting,	the	choice	of	the	weights	is	not	
relevant,	as	the	optimal	solution	will	be	the	same	for	all	the	objectives.	In	case	of	
conflicting	objectives,	the	transformation	into	a	single	objective	leads	to	renounc-
ing	to	exploit	the	variety	of	possible	solutions	with	respect	to	the	other	kind	of	
formulation.	As	a	particular	case	(Mago	and	Chamra,	2009),	the	weights	can	be	
set	to	the	inverse	of	the	quantity	to	minimize	evaluation	in	conventional	condi-
tions.	A	further	approach	(Tsay,	2003)	is	based	on	considering
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	 	 where	 f j 	is	the	best	solution	found	for	objective	j	=	1,	.	.	.,	N	from	the	solution	of	a	
single-objective	problem	with	the	same	objective	j,	and	 f j

∨
	is	the	worst	solution	

obtained	for	objective	j	in	the	optimal	solution	of	a	single-objective	problem	refer-
ring	to	any	(other)	individual	objective.	In	Equation	10.17,	the	weighting	factors	
w1,	. . .,	wN	are	positive	and	their	sum	is	constrained	to	unity.

Moreover,	goal	programming	(Chang	and	Fu,	1998)	can	be	used	to	transform	
a	multiobjective	problem	into	a	single-objective	one.

	 2.	 Handling	 the	 multiple	 objectives	 simultaneously,	 with	 the	 aim	 of	 seeking	 not	
only	 the	 optimal	 values	 of	 the	 individual	 objectives	 but	 rather	 identifying	 an	
extended	class	of	compromise solutions	appearing	in	hyperspace	formed	by	rep-
resenting	 the	 individual	 objectives	 on	 orthogonal	 directions:	 The	 compromise	
solutions	 are	 interesting	 as	 feasible	 alternatives	 to	 assist	 the	 decision-making	
process.	The	conceptual	 framework	 for	obtaining	 the	compromise	 solutions	 is	
based	on	the	definition	of	a	nondominated	solution	as	a	solution	for	which	it	is	
not	possible	to	find	other	solutions	with	better	performance	for	all	the	individual	
objective	 functions.	 The	 Pareto front	 is	 thus	 defined	 as	 the	 set	 of	 all	 possible	
	nondominated	solutions.

10.3.2  Single Objectives and Performance Indicators

In	the	formulation	of	a	single-objective	function,	the	focus	is	generally	set	on	the	defini-
tion	 of	 suitable	 indicators	 that	 can	 be	 conveniently	 used	 in	 energy	 system	 operation	
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studies.	These	indicators	consider	that	the	relevant	quantities	represent	constant	values	
or	average	values	in	the	time	interval	under	analysis,	for	any	duration	of	the	time	interval.	
As	 such,	 for	 the	 sake	 of	 simplicity,	 the	 subscript	 referring	 to	 the	 time	 interval	 is	 not	
explicitly	represented	in	the	illustration	of	the	indicators	provided	below,	reporting	the	
links	to	the	general	formulation	10.12	at	the	end	of	each	section.

10.3.2.1  Technical Performance Indicators

As	an	example	of	MG,	let	us	consider	a	combined	trigeneration	system,	in	which	energy	
efficiency	can	be	assessed	by	resorting	to	synthetic	indicators	of	the	overall	plant	perfor-
mance.	By	using	the	black-box	approach	indicated	in	Section	10.2.2.2,	the	only	energy	
flows	to	take	into	account	are	the	ones	visible	from	the	outside,	no	matter	what	happens	
inside	the	plant.

For	this	purpose,	let	us	consider	the	trigeneration	primary	energy	saving	(TPES)	indi-
cator	(Chicco	and	Mancarella,	2007a)	that	quantifies	the	primary	energy	saving	from	a	
generic	trigeneration	plant	with	respect	to	the	conventional	separate	production	serving	
the	same net useful energy outputs	(electricity	Wo,	heat	Qo,	and	cooling	Ro)	to	the	user.	Let	
us	further	consider	the	overall	fuel	thermal	input	Fi	to	the	trigeneration	system	(for	CHP	
prime	mover	and	boiler)	and	 the	 total	 fuel	 thermal	energy	 input	FSP	 required	 for	 the	
separate production	of	electricity	Wo	through	a	power	plant	with	conventional	reference	
efficiency	ηe

SP ,	heat	Qo	 through	boilers	with	conventional	reference	efficiency	ηt
SP,	and	

cooling	Ro	through	a	CERG	with	conventional	reference	efficiency	COPSP.
The	TPES	indicator	is	expressed	as
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More	 generally,	 in	 Chicco	 and	 Mancarella	 (2008a),	 the	 TPES	 indicator	 has	 been	
extended	to	a	polygeneration	system	supplying	different	types	of	energy	vectors	to	the	
users.	For	this	purpose,	let	us	consider	the	pairs	( , )X x ,	where	X	is	the	energy	vector	and	
x	is	the	corresponding	energy	that	characterizes	the	useful	net	output	(for	instance,	with	
X	corresponding	to	heat	Q	and	x	corresponding	to	thermal	energy	t).	By	introducing	the	
pairs	( , )X x 	 in	 the	 set	D,	 the	 resulting	 polygeneration	 primary	 energy	 saving	 (PPES)	
indicator	is	written	as
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Each	 term	 ηx
SP 	 represents	 the	 conventional	 separate	 production	 efficiency	 for	 the	

energy	vector	X.	The	numerical	values	to	assign	to	these	efficiencies	have	to	be	specified	
by	 the	 relevant	 regulatory	 bodies	 (Cardona	 and	 Piacentino,	 2005;	 Mancarella	 and	
Chicco,	2009a).
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The	 TPES	 or	 PPES	 indicator	 is	 positive	 when	 the	 trigeneration	 or	 polygeneration	
	system	requires	an	amount	of	fuel	Fi	lower	than	the	amount	FSP	needed	for	running	the	
separate	production	system	to	serve	the	same	user’s	load.	Hence,	positive	TPES	or	PPES	
values	(with	upper	value	conceptually	limited	to	unity)	indicate	convenience	in	energy	
efficiency	terms	of	exploiting	trigeneration	to	serve	the	composite	energy	load.	Negative	
TPES	or	PPES	values	 indicate	 lack	of	convenience	of	 trigeneration	or	polygeneration,	
and	their	absolute	value	is	conceptually	not	limited.

Elaborations	of	the	PPES	concept	can	be	made	by	exploiting	the	entries	of	Equation	
10.19.	 For	 instance,	 Cardona	 and	 Piacentino	 (2003)	 propose	 to	 adopt	 for	 short-term	
analyses	(e.g.,	within	1	h)	a	management	criterion	for	a	CHP	system	that	could	be	more	
effective	than	the	usual	TLT	mode.	This	criterion	is	based	on	rewriting	the	condition	
F	≤	FSP	by	expressing	FSP	as	the	sum	of	the	contributions	from	the	EDS	and	from	boilers,	
yielding	the	positive	energy	saving	criterion
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A	 similar	 rationale	 can	 be	 adopted	 to	 identify	 acceptable	 operating	 conditions	 by	
rewriting	the	energy	system	equations	in	specific	MG	cases.

In	the	minimization	framework	of	Equation	10.12,	the	objective	function	to	be	evalu-
ated	is

	 F( ) ( )x xsdh sdhPPES= −1 	 (10.21)

10.3.2.2  Environmental Performance Indicators

Environmental	performance	indicators	may	refer	to	global	or	local	emissions	of	various	
types	of	pollutants	that	can	create	hazards	to	public	health	or	to	other	receptors	(Canova	
et al.,	2008).

For	global	emissions,	the	mass	of	CO2	is	evaluated	by	resorting	to	the	emission factor 
model	 (Cârdu	 and	 Baica,	 2002;	 Meunier,	 2002;	 Minciuc	 et  al.,	 2003)	 to	 represent	 the	
reference-specific	emissions	 �CO

,SP
2

X 	 for	producing	the	energy	vector	X	 in	separate	pro-
duction.	The	emission	factor	model	is	based	on	considering	the	mass	 mX

CO2
	of	CO2	emit-

ted	to	produce	the	useful	energy	output	X,	and	expressing	it	as	a	function	of	the	energy	
and	of	the	emission factor	 �CO2

X 	(or	specific mass emissions	per	unity	of	X,	in	[g/kWh]),	
so	that

	 m XX X
CO CO2 2

= ⋅μ 	 (10.22)

For	a	polygeneration	system,	Chicco	and	Mancarella	(2008a)	introduced	an	indicator	
consistent	with	respect	to	the	PPES	indicator	used	for	energy	efficiency	assessment.	This	
indicator	 is	 called	polygeneration	CO2/carbon	dioxide	emission	 reduction	 (PCO2ER/
PCDER),	and	is	based	on	the	relative	difference	between	the	mass	mF

CO2
	of	CO2	emitted	
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by	 the	 polygeneration	 system	 and	 the	 mass	 mF
CO

,SP
2

	 emitted	 in	 separate	 production	 to	
serve	the	same	amount	of	demand	energy	vectors	(included	in	the	set	D):
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Other	 GHGs	 seen	 as	 global	 pollutants	 can	 be	 handled	 by	 means	 of	 their	 global	
warming	potential	(GWP),	expressed	as	multiple	of	CO2	(for	which	GWPCO2

1= ),	thus	
introducing	for	a	generic	GHG	g	the	equivalent	emission	factor	(Chicco	and	Mancarella,	
2008b;	Mancarella	and	Chicco,	2010)

	 μ μCO eq2
GWP,g

X
g g

X= ⋅ 	 (10.24)

summing	up	the	contributions	of	the	various	GHGs	belonging	to	the	set	G	emitted	from	
the	same	source

	
μ μCO eq CO eq2 2

X
g

X

g

=
∈
∑ ,

G 	
(10.25)

and	 replacing	 the	 emission	 factors	 related	 to	 CO2	 in	 Equation	 10.23	 with	 the	 corre-
sponding	equivalent	ones	�CO2eq

F 	and	 �CO eq
,SP

2 ,
X .

By	 further	 introducing	 the	 CO2	 emission equivalent efficiency	 ηCO
SP

2 ,x	 for	 the	 pair	
( , )X x ∈D,	defined	in	Chicco	and	Mancarella	(2008a)	as

	
η

μ

μCO
SP CO

CO
,SP2

2
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(10.26)

expression	10.23	becomes

	

PCDER

CO
SP

2

= −

( )∈
∑

1 F
X

i

xX x
η ,, D 	

(10.27)

For	instance,	considering	a	cogeneration	plant	with	useful	electricity	output	W,	useful	
heat	output	Q,	and	fuel	input	Fi,	with	emission	factor	�CO2

F ,	the	emission	factors	to	be	
used	for	calculating	the	CO2	emission	equivalent	efficiencies	are	�CO

,SP
2

W 	for	conventional	
separate	 production	 of	 electricity	 and	 �CO

,SP
2

Q 	 for	 conventional	 separate	 production	 of	
heat.

Besides	global	warming,	other	aspects	can	be	taken	into	account	to	calculate	the	global	
emissions.	Wang	et al.	(2010b)	consider	the	acidification	potential	(AP)	as	the	potential	
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of a	substance	to	build	and	release	H+	protons,	expressed	in	relative	terms	with	respect	to	
SO2	as	 the	reference	substance,	and	define	the	SO2	equivalents	emissions.	 In	the	same	
way,	they	consider	the	ozone	depletion	potential	(ODP)	as	the	potential	of	a	substance	to	
deplete	the	stratospheric	ozone,	expressed	in	relative	terms	with	respect	to	reference	sub-
stance	trichlorofluoromethane	(CCl3F,	also	identified	as	R11),	and	define	the	R11	equiva-
lent	 emissions.	 Correspondingly,	 let	 us	 consider	 a	 set	 G	 of	 relevant	 substances	 and	
introduce	for	a	substance	g	∈	G	the	emission	factors	 νg

X 	(g/kWh)	with	respect	to	acidifi-
cation	and	οg

X 	(g/kWh)	with	respect	to	stratospheric	ozone	depletion.	The	emission	factors	
related	to	the	reference	substances	become

	 ν νSO eq2
AP,g

X
g g

X= ⋅ 	 (10.28)

	 ο οR g
X

g g
X

11eq ODP, = ⋅ 	 (10.29)

In	 the	 presence	 of	 multiple	 substances	 emitted	 by	 the	 same	 source,	 the	 equivalent	
emissions	are	obtained	by	summing	up	the	contributions	from	the	various	substances	
belonging	to	set	G:

	
ν νSO eq SO eq2 2

X
g

X

g
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G 	
(10.30)
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In	this	way,	it	is	possible	to	introduce	two	global	emission	indicators	written	in	a	form	
similar	to	that	in	Equation	10.23,	namely,	polygeneration	sulfur	dioxide	emission	reduc-
tions	(PSDER)	for	the	acidification	problem
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and	 polygeneration	 R11	 emission	 reductions	 (PR11ER)	 for	 the	 stratospheric	 ozone	
depletion	problem
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For	 local	 pollutants,	 again	 with	 reference	 to	 the	 emission	 factors,	 it	 is	 possible	 to	
work	out	specific	emission balance models,	taking	into	account	the	contribution	of	the	
pollutant	under	interest	to	the	local	emissions.	In	this	case,	the	effect	of	the	emissions	
is	limited	to	a	portion	of	the	territory.	It	is	then	important	to	introduce	a	factor	that	
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takes	into	account	that	only	a	fraction	of	the	pollutant	emitted	by	an	energy	source	in	
separate	production	can	reach	the	portion	of	the	territory	under	analysis.	For	instance,	
in	a	simple	cogeneration	case,	given	a	pollutant	g	it	is	possible	to	consider	the	factors	
βg

W ,SP 	and	βg
Q ,SP 	representing	the	fractions	of	the	pollutants	emitted	by	the	separate	pro-

duction	sources	that	are	assumed	to	reach	the	territorial	area	of	interest.	If	electricity	is	
produced	sufficiently	far	from	that	area,	so	that	no	amount	of	pollutant	g	with	specific	
emissions	�g

W ,SP	can	reach	the	area,	it	may	be	assumed	βg
W ,SP 	=	0,	whereas	βg

Q ,SP 	=	1	could	
be	set	up	to	represent	the	effect	of	pollutant	g	emitted	by	the	boilers	located	in	the	area,	
with	specific	emissions	�g

Q ,SP .	The	indicator	of	local	emissions	reduction	(LER)	for	pollutant	
g	can	then	be	written	as
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The	extension	of	the	above	indicator	to	polygeneration	systems	yields	the	polygenera-
tion	local	emission	reduction	(PgLER)	indicator	(related	to	pollutant	g)

	

PgLER
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To	summarize,	in	the	minimization	framework	of	Equation	10.12,	the	objective	func-
tion	to	be	evaluated	are

•	 For	equivalent	CO2	emissions:

	 F( ) ( )x xsdh sdhPCDER= −1 	 (10.36)

•	 For	equivalent	sulfur	dioxide	emissions:

	 F( ) ( )x xsdh sdhPSDER= −1 	 (10.37)

•	 For	equivalent	R11	emissions:

	 F( ) ( )x xsdh sdhPR11ER= −1 	 (10.38)

•	 For	local	emissions	of	pollutant	g:

	 F( ) ( )x xsdh sdhPgLER= −1 	 (10.39)
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Further	 approaches	 can	 be	 defined	 under	 a	 comprehensive	 life-cycle	 assessment	
framework,	 incorporating	 a	 broad	 number	 of	 impact	 categories	 and	 their	 hazardous	
effects	on	human	health,	ecosystem	quality,	and	resources,	and	defining	suitable	indica-
tors	and	related	objective	functions	(Carvalho	et al.,	2011).

10.3.2.3  Economic Performance Indicators

A	general	indicator	of	economic	performance	is	built	by	taking	into	account	the	differ-
ence	between	costs	and	revenues.	 In	 the	minimization	 framework	of	Equation	10.12,	
with	costs	C( )x sdh 	and	revenues	R ( )x sdh ,	the	corresponding	formulation	has

	 F C R( ) ( ) ( )x x xsdh sdh sdh= − 	 (10.40)

For	a	DiT	problem,	it	is	possible	to	consider	objective	function	minimization	in	each	
individual	 time	 interval	 (Cardona	et al.,	2006b;	Chicco	and	Mancarella,	2009b).	For	
instance,	taking	into	account	the	fuel	price	ρg

GDS,	the	electricity	price	ρi
EDS	for	the	elec-

tricity	bought	from	the	EDS,	and	the	electricity	price	ρo
EDS	for	the	electricity	sold	to	the	

EDS,	 the	 objective	 function	 components	 become	 C( ) ( )x sdh
GDS EDS

sdh= +ρ ρg i i iF W 	 and	
R ( ) ( ( ))x sdh

EDS
sdh= −ρo o dW W .	The	definition	of	the	time	intervals	has	to	be	consistent	

with	the	time	resolutions	of	the	price	variations,	especially	for	the	electricity	markets	
cleared	at	each	hour	(or	less,	depending	on	the	rules	in	force	in	the	specific	jurisdic-
tion),	whereas	for	gas	markets	and	emission	trading	the	time	resolutions	are	generally	
longer.

Approaches	aimed	at	simultaneous	solution	of	planning	and	operation	of	MG	sys-
tems	are	often	based	on	the	minimization	of	the	total	annual	cost	(Sakawa	et al.,	2002;	
Yokoyama	et al.,	2002;	Oh	et al.,	2007;	Lozano	et al.,	2009a),	maximization	of	the	net	
present	 value	 (Piacentino	 and	 Cardona,	 2008a),	 or	 maximization	 of	 the	 difference	
between	revenues	and	costs	 in	 the	daily	activity	 (Aringhieri	 and	Malucelli,	 2003).	 In	
some	 cases,	 the	 operation	 problem	 is	 specifically	 formulated	 as	 minimization	 of	 the	
variable	operational	costs	(Kong	et al.,	2005;	Weber	et al.,	2006;	Lozano	et al.,	2009b).	
Arcuri	et al.	(2007)	propose	the	maximization	of	the	gross	operational	margin	as	the	
difference	between	revenues	and	costs,	also	introducing	an	annual	tax	rate	for	embed-
ding	the	operational	optimization	solutions	into	a	multiyear	planning	analysis	with	dif-
ferent	scenarios.

Another	set	of	economic	indicators	can	be	defined	in	terms	of	SS	concepts	(Piacentino	
and	Cardona,	2008b).	For	instance,	the	ratio	SSe	between	the	market	(marginal)	price	of	
electricity	ρe	(in	monetary	units	per	kilowatt-hour)	and	the	variable	cost	for	producing	
it	depends	on	the	market	price	of	fuel	ρ f 	(in	monetary	units	per	standard	cubic	meter	for	
natural	gas,	or	monetary	units	per	kilogram	for	diesel):

	
SS

LHVCHP

e
e

f

e f=
ρ
ρ

η
3600 	

(10.41)
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where	 LHVf	 is	 the	 fuel	 lower	 heating	 value	 (in	 kilojoules	 per	 standard	 cubic	 meter).	
According	to	this	definition,	operation	in	TLT	mode	is	convenient	for	SSe	>	1.

Other	SS	indicators	introduced	in	Piacentino	and	Cardona	(2008a,b)	are:

•	 The	thermal	total	supply	spread	(TSSt),	obtained	from	the	ratio	between	the	cost	
of	producing	1	kWh	of	electricity	through	separate	or	combined	production	and	
the	corresponding	amount	of	heat	recovered.	This	indicator	can	be	expressed	in	
the	form

	
TSS

LHVCHP CHP CHP

SPt
e

f

e f e

t
= +
ρ
ρ

η η λ
η3600 	

(10.42)

	 	 where	λCHP 	is	the	heat-to-power	ratio	of	the	CHP	unit	(Horlock,	1997;	Mancarella	
and	Chicco,	2009a).

•	 The	cooling	total	supply	spread	(TSSc),	in	which	profitability	of	combined	cooling	
production	through	an	absorption	chiller	with	efficiency	COPc	is	assessed	against	
the	electricity	saved	in	separate	production	through	a	heat	pump	with	efficiency	
COPSP.	Its	expression	is
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The	TSSt	 and	TSSc	 indicators	 represent	different	margins	of	 convenience	existing	
when	heat	recovery	supplies	directly	a	heating	load	or	is	used	as	input	to	an	absorption	
chiller	 to	 supply	 the	 cooling	demand,	 respectively.	As	 the	CHP	 thermal	output	 can	
also	be	used	for	both	types	of	demand,	the	convenience	of	operating	the	CHP	corre-
sponds	to	the	condition	min{TSSt,	TSSc}	>	1,	otherwise	the	indication	is	to	switch	off	
the	CHP	unit.

The	SS	ratios	are	interesting	because	their	values	can	vary	at	different	time	intervals,	
so	that	they	can	be	easily	introduced	in	market-price-based	frameworks.

Further	 information	 of	 economic	 relevance	 can	 be	 gathered	 from	 calculating	 the	
marginal costs	associated	with	the	change	of	any	operational	constraint	(Lozano	et al.,	
2009b).	The	marginal	costs	are	calculated	as	the	dual	prices	(variations	in	the	objective	
function	resulting	by	changing	a	constraint	of	one	unit	of	a	resource)	and	can	be	used	
to  identify	 the	 operational	 constraint	 that	 can	 be	 modified	 to	 improve	 the	 objective.	
The dual	prices	can	be	calculated	by	using	linear	programming	solvers,	or	as	Lagrangian	
multipliers	 expressing	 the	 first-order	 Kuhn–Tucker	 optimality	 conditions	 (Hemmes	
et al.,	2007;	Piacentino	and	Cardona,	2007).	Considering	cost	minimization,	the	optimal	
solution	is	written	as

	 z l= HT
	 (10.44)
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where	H	is	the	system	efficiency	matrix,	and	λ	(Lagrangian	multipliers)	and	ζ	represent	
the	marginal	costs	of	the	energy	carriers	at	the	output	and	the	input	of	the	MG	system,	
respectively.

10.3.2.4  Environomics Performance Indicators

The	environomics	approach	(Curti	et al.,	2002a,b;	Borchiellini	et al.,	2002)	is	based	on	
the	 construction	 of	 a	 single-objective	 function,	 in	 which	 environmental	 costs	 and	
benefits	referring	to	CO2	and	other	pollutants	are	included	in	the	formulation	of	the	
objective	function.

Dealing	with	environomics,	in	the	minimization	framework	of	10.12	the	performance	
indicator	is	built	by	adding	to	costs	C( )x sdh 	and	revenues	R ( )x sdh 	a	further	term	E x sdh( )	
containing	the	pollution	costs	for	system	manufacture	and	removal,	as	well	as	for	prepa-
ration	and	transport	of	the	energy	resources,	and	the	pollution	costs	during	operation,	
so	that

	 F C E R( ) ( ) ( ) ( )x x x xsdh sdh sdh sdh= + − 	 (10.45)

In	the	operation	time	frame,	the	relevant	entries	are	fuel	costs,	costs	related	to	CO2	
and	other	pollutants	(operational	costs,	taxes,	and	penalties),	maintenance	costs	depend-
ing	on	system	operation,	and	benefits	from	production	revenues.	The	objective	function	
can	be	expressed	in	monetary	units	or,	alternatively,	in	exergy	terms	(Deng	et	al,	2008;	
Roque	Díaz	et al.,	2010).

10.3.3  Multiobjective Formulations

With	 reference	 to	 the	 formulations	 introduced	 in	 Section	 10.3.1.2,	 some	 approaches	
reported	in	the	literature	are	based	on:

	 1.	 Transformation	of	multiple	objectives	into	a	single objective:	This	transformation	
has	been	formulated	for	instance	with	reference	to	energy	efficiency	and	environ-
mental	objectives	(Wang	et al.,	2010b),	to	economic,	environmental,	and	energy	
efficiency	objectives	(Mago	and	Chamra,	2009;	Wang	et al.,	2010a),	or	to	economic	
and	expected	power	and	heat	generation	with	respect	to	the	corresponding	uncer-
tain	demand	(Chang	and	Fu,	1998).

	 2.	 Handling	 the	 multiple	 objectives	 simultaneously:	 The	 multiple	 objectives	
	considered	have	been	of	different	types,	that	is,	CO2	emissions	and	costs	(Burer	
et al.,	2003;	Xia	et al.,	2004;	Aki et al.,	2006a,b;	Pelet	et al.,	2005;	Bernal-Agustìn	
et al.,	2006;	Li	et al.,	2006;	Wang	et al.,	2008),	CO2	emissions,	costs,	and	efficiency	
(Kavvadias	and	Maroulis,	2010),	energy	consumption	and	local	emissions	(Boicea	
et al.,	2009),	costs,	CO2	emissions,	and	emissions	of other	pollutants	(Tsay,	2003;	
Mavrotas	et al.,	2007;	Kavvadias	and	Maroulis,	2010),	also	with	a	stochastic	mul-
tiobjective	 formulation	 with	 total	 generation	 cost,	 expected	 power	 generation	
deviation,	and	expected	heat	generation		deviation	with	respect	to	the	correspond-
ing	power	and	heat	demand	(Chang	and	Fu,	1998).
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10.4  Constraints

10.4.1   Nature of the Constraints in the Operational 
Optimization Problem

Equality	and	inequality	constraints	have	to	be	included	in	the	overall	formulation	of	the	
optimization	problem.	Constraints	acting	on	a	single	variable	or	on	a	function	of	more	
variables	may	be	of	punctual	type	(referring	to	a	given	time	moment)	or	of	integral	type	
(referring	to	quantities	accumulated	over	time).	The	details	of	the	constraints	encoun-
tered	in	MG	operational	optimization	are	provided	in	the	following	sections.

For	a	CiT	problem,	let	us	introduce	a	set	of	binary	variables	implementing	unit	com-
mitment	concepts	(Arroyo	and	Conejo,	2000)	for	equipment	Y ∈Y ,	such	that	bh

Y 	=	1	if	
equipment	Y	is	in	operation	at	time	interval	h,	bh

Y 	=	1	if	equipment	Y	is	started	up	at	the	
beginning	of	time	interval	h,	and	bh

Y 	=	1	if	equipment	Y	is	shut	down	at	the	beginning	of	
time	interval	h.

10.4.2  Equality Constraints

Equality constraints	represent	the	energy	balances	referring	to	each	time	interval	for	the	
various	 types	 of	 energy	 involved	 (for	 instance,	 fuel,	 electrical,	 thermal,	 and	 cooling	
energy,	as	in	the	example	shown	in	Figure	10.2).	These	balances	can	be	seen	at	both	the	
input	 and	 output	 terminals	 of	 the	 individual	 plant	 components	Y ∈Y ,	 represented	 in	
matrix	formulation	(Chicco	and	Mancarella,	2009b)	as

	 H v v 0Y
i
Y

o
Y− = 	 (10.46)

and	at	the	input	and	output	terminals	of	the	whole	plant,	expressed	as

	 Hv v 0i o− = 	 (10.47)

Another	equality	constraint	represents	the	uniqueness	of	the	direction	in	which	elec-
tricity	 flows	 in	 each	 time	 interval.	 If	 electricity	 is	 bought	 from	 the	 EDS,	 Wi	>	0	 and	
Wo	=	Wd,	 else	electricity	 is	 sold	 to	 the	EDS,	with	Wi	=	0	and	Wo	>	Wd.	These	equality	
constraints	 are	 associated	 with	 the	 inequality	 constraints	 Wi	≥	0	 and	 Wo	≥	Wd	 as	
reported	in	Section	10.4.3:

	 W W Wi o d⋅ −( ) = 0 	 (10.48)

For	a	CiT	problem,	the	status	(on/off)	of	the	units	in	operation	may	change	depending	
on	the	units	started	up	or	shut	down	at	the	beginning	of	time	interval	h.	The	following	
equality	 constraint	 (Arroyo	 and	 Conejo,	 2000)	 expresses	 the	 link	 among	 the	 binary	
variables	for	unit	Y ∈Y :

	 b b b bh
Y

h
Y

h
Y

h
Y− − + =−1 0 	 (10.49)
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Further	equality	constraints	refer	to	the	representation	of	specific	aspects,	such	as	the	
ones	 indicated	 in	 Arroyo	 and	 Conejo	 (2000),	 for	 the	 staircase-like	 approximation	 of	
nonlinear	(e.g.,	exponential)	start-up	costs	or	the	linear	approximation	of	a	nonlinear	
cost	function.

Specific	equality	constraints	acting	in	a	CiT	problem	depend	on	storage	(Geidl	and	
Andersson,	2007b;	Hajimiragha	et al.,	2007),	represented	by	the	storage	coupling	matrix	
S	and	the	vector	z	containing	the	energy	stored	for	the	various	energy	vectors.	Expression	
10.47	in	the	presence	of	storage	is	thus	extended	to	obtain

	
Hv v S z 0i o− − =

d
dt 	

(10.50)

where	the	variation	in	time	of	energy	stored	in	a	(discrete)	time	interval	h	depends	on	
the	difference	among	the	energy	stored	at	the	two	successive	time	intervals	h	−	1	and	h,	
and	on	the	energy	losses	zh

 	during	time	interval	h:

	
d
d
z

z z zt h h h= − +−1


	
(10.51)

Another	relevant	aspect	concerning	storage	is	that	the	stored	energy	at	the	beginning	
and	at	the	end	of	the	period	of	analysis	(i.e.,	in	the	initial	condition	0	and	at	the	last	time	
interval	H)	has	to	be	equal	to	a	predefined	value	(Rong	et al.,	2008)	or	has	to	be	the	same	
(Hajimiragha	et al.,	2007),	namely,	in	the	latter	case:

	 z z 00 − =H 	 (10.52)

10.4.3  Inequality Constraints

10.4.3.1  Capacity Constraints

In	a	DiT	problem,	capacity	constraints	are	 included	as	 lower	and	upper	 limits	of	 the	
energy	vectors	relevant	to	each	plant	component.	In	general,	by	introducing	the	lower	
and	 upper	 limits	 for	 equipment	 Y ∈Y 	 in	 the	 vectors	 vY 	 and	 vY ,	 respectively,	 in	 the	
matrix	formulation	the	capacity	constraints	are	expressed	by

	 H v vY
i
Y Y− ≤ 0 	 (10.53)

	 v H vY Y
i
Y− ≤ 0 	 (10.54)

For	instance,	for	the	CHP	the	maximum	limits	 vCHP CHP CHP= [ , , , ]0 0W Q T 	correspond	
to	the	rated	power	for	electricity	and	heat,	or	the	sum	of	the	rated	powers	if	the	CHP	is	
composed	of	a	cluster	of	units.	The	minimum	limits	 vCHP CHP CHP= [ , , , ]0 0W Q T 	depend	
on	technical	aspects;	for	instance,	for	a	single	CHP	unit	the	lower	limit	can	be	set	to	50%	
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of	the	rated	power,	and	for	a	cluster	of	units	it	can	be	set	to	50%	of	the	rated	power	of	the	
unit	with	the	smallest	size	(Chicco	and	Mancarella,	2009b).	In	this	case,	the	equipment	
switch-off	condition	has	to	be	identified	by	introducing	a	dedicated	variable	(leading	to	
a	nonconnected	portion	of	the	domain	in	terms	of	domain	definition	through	continu-
ous	variables),	or	included	as	a	further	operating	condition	in	case	of	discrete	represen-
tation	of	the	domain.

With	 reference	 to	 the	 CCHP	 scheme	 shown	 in	 Figure	 10.2,	 the	 limits	 are	 set	 to	
v AB = [ , , , ]0 0 0 0 T	 and	 v AB AB= [ , , , ]0 0 0Q T 	 for	 the	 AB,	 vCERG = [ , , , ]0 0 0 0 T 	 and	 vCERG CERG= [ , , , ]0 0 0 R T	

vCERG CERG= [ , , , ]0 0 0 R T for	the	CERG,	and	 v WARG = [ , , , ]0 0 0 0 T 	and	 v WARG WARG= [ , , , ]0 0 0 R T 	for	
the	WARG.

In	a	CiT	problem,	the	definition	of	the	capacity	constraints	has	to	take	into	account	
the	effect	of	further	aspects	such	as	reserve	constraints,	ramp-rate	limits	for	start-up,	
shut-down,	ramp-up,	and	ramp-down	during	operation.

Constraints	 on	 maintaining	 a	 sufficient	 amount	 of	 reserves	 can	 be	 included	
by reducing	 the	capacity	 limit	 to	make	a	predefined	amount	of	 reserve	gh	 available	
at time	interval	h	(Kockar	et al.,	2009).	In	this	case,	Equation	10.53	for	Y ∈Y 	is	modi-
fied	as

	
H v g vY

i
Y

h h
Y( ) + − ≤ 0

	 (10.55)

Following	 the	approach	presented	 in	Arroyo	and	Conejo	 (2000),	 the	 formulation	
of the	capacity	constraints	shown	in	Equations	10.53	and	10.54	for	equipment	Y ∈Y 	
with	reference	to	time	interval	h	can	be	extended	to	incorporate	the	ramp-rate	con-
straints.	For	a	general	representation,	the	limits	are	indicated	here	for	any	energy	vec-
tor	 used.	 In	 practice,	 simplified	 representations	 can	 be	 derived	 by	 including	 only	
limits	referring	to	a	subset	of	the	energy	vectors.	Considering	equipment	Y ∈Y 	at	time	
interval	h,	let	us	introduce	the	vectors	rhY 	and	rh

Y 	containing	the	ramp-rate	limits	dur-
ing	operation	for	ramp-up	and	ramp-down,	respectively,	and	the	vectors	 sh

Y 	and	 sh
Y 	

containing	the	ramp-rate	limits	for	start-up	and	shut-down,	respectively.	In	practice,	
for	 equipment	 Y	 the	 upper	 capacity	 limit	 at	 time	 interval	 h	 may	 be	 reduced	 with	
respect	to	vY ,	taking	into	account	the	shut-down	ramp-rate	if	the	equipment	has	to	be	
shut	down	at	next	time	interval	h	+	1,	the	start-up	ramp-rate	if	the	equipment	has	to	
be	started	up	at	time	interval	h,	and	the	ramp-up	rate	if	the	equipment	is	already	in	
operation	 at	 time	 interval	 h.	 Likewise,	 the	 lower	 capacity	 limit	 at	 time	 interval	
h  depends	 on	 the	 ramp-down	 rate	 if	 the	 equipment	 is	 already	 in	 operation	 at	 time	
interval	h	−	1,	and	on	the	shut-down	ramp	rate	if	the	equipment	is	shut	down	at	time	
interval	h.

The	upper	capacity	limits	are	represented	through	the	following	equations:

	
H v v sY

i
Y

h h
Y

h
Y Y

h
Y Yb b b( ) − −( ) − ≤+ +1 1 0

	
(10.56)

	
H v H v r sY

i
Y

h
Y

i
Y

h h
Y Y

h
Y Yb b( ) − ( ) − − ≤

− −1 1 0
	

(10.57)
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Likewise,	the	lower	capacity	limits	are	represented	as

	
bh

Y Y Y
i
Y

h
v H v− ( ) ≤ 0

	
(10.58)

	
H v H v r sY

i
Y

h
Y

i
Y

h h
Y Y

h
Y Yb b( ) − ( ) − − ≤

−1
0

	
(10.59)

To	prevent	start-up	and	shutdown	of	equipment	Y	 to	be	superposed,	 the	 following	
constraint	 is	 introduced,	allowing	only	values	of	0	or	1	 for	 the	corresponding	binary	
variables:

	 b bh
Y

h
Y+ − ≤1 0 	 (10.60)

Considering	 storage	 elements,	 the	 upper	 and	 lower	 capacity	 limits	 for	 the	 various	
energy	vectors	are	indicated	as	z 	and	z ,	respectively,	and	the	corresponding	charge	and	
discharge	rate	limits	are	indicated	as	z + 	and	z − ,	respectively	(Rong	et al.,	2008).	Including	
the	 ramp-rate	 limits	 for	 storage	can	be	avoided	 if	variations	 in	 the	 stored	energy	are	
assumed	to	occur	only	at	the	charge	and	discharge	rate	limits.	In	this	case,	the	terms	z + 	
and	 z − 	 are	directly	 embedded	 in	 the	 storage	coupling	 matrix	 (Geidl	 and	Andersson,	
2007b;	Hajimiragha	et  al.,	 2007).	Further	 limits	 concerning	 storage	could	depend	on	
imposing	a	minimum	level	of	charge	of	the	storage	capacity	at	the	beginning	and	at	the	
end	of	the	analysis	period	(Piacentino	and	Cardona,	2008a).

10.4.3.2  Operational Constraints

For	a	CiT	problem,	in	addition	to	the	ramp-rate	limits	included	in	the	upper-	and		lower-
capacity	 limits,	 operational	 constraints	 may	 refer	 to	 the	 minimum	 duration	 of	 unit	
operation	in	on	and	off	states.	These	constraints	are	relevant	to	the	operation	of	relatively	
large	thermal	units,	whose	time	constants	can	be	significantly	long,	and	for	which	main-
tenance	reasons	could	require	to	limit	the	on–off	or	off–on	transitions	during	a	given	
time	period.

The	 implementation	of	 this	constraint	calls	 for	 the	 introduction	of	dedicated	vari-
ables.	According	to	Arroyo	and	Conejo	(2000),	let	us	introduce	for	equipment	Y ∈Y 	the	
minimum	up	time	τY 	and	the	minimum	down	time	τY ,	together	with	a	counter	�h

Y 	indi-
cating	the	duration	for	which	unit	Y	has	been	continuously	on	(�h

Y 	>	0)	or	off	(�h
Y 	<	0)	at	

the	end	of	time	interval	h.	The	minimum	up-time	constraint	is	then	formulated	as

	 − −( ) −( ) ≤− −ς τh
Y Y

h
Y

h
Yb b1 1 0 	 (10.61)

and	the	minimum	down-time	constraint	is	expressed	by

	
ς τh

Y Y
h
Y

h
Yb b− −+( ) −( ) ≤1 1 0

	
(10.62)
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10.4.3.3  Environmental Constraints

Environmental	 constraints	 can	 generally	 be	 of	 integral	 type,	 namely,	 referring	 to	 a	
	predefined	period	of	time	and	as	such	applied	to	CiT	problems.

Let	us	consider	the	vector	eh
X 	containing	the	emissions	of	an	ordered	set	of	GHG	or	

other	pollutants	emitted	during	the	production	of	the	energy	vector	X	in	the	time	inter-
val	h	=	1,	. . .,	H.

The	emission	vector	components	can	be	considered	to	be	subject	to	a	cumulative	limit	
e X ,	corresponding	to	the	inequality	constraint

	
− + ≤

=
∑e eX

h
X

h

H

1

0
	

(10.63)

Likewise,	 the	 constraint	 could	 refer	 to	 a	 minimum	 acceptable	 emission	 reduction	
with	respect	to	the	conventional	reference	case	(Mavrotas	et al.,	2007).

The	inequality	constraint	formulation	can	be	modified	to	encompass	the	presence	of	
a	market	for	emission	allowances	(Kockar	et al.,	2009)	in	which	the	regulation	enables	
buying	or	selling	the	emission	allowances	indicated	as	



ah
X 	(bought)	and	



ah
X 	(sold),	thus	

obtaining

	
− + + −( ) ≤

=
∑e e a aX

h
X

h
X

h
X

h

H � �

1

0
	

(10.64)

This	 formulation	 is	 also	 accompanied	 by	 constraints	 on	 the	 maximum	 amount	 of	
emissions	allowances	planned	to	be	bought	or	sold	in	each	time	interval,	respectively	
indicated	as	



ah
X 	and	



ah
X ,	introduced	by	resorting	to	the	further	binary	variables	



bh
X 	and	



bh
X 	indicating	whether	the	emission	allowances	are	bought	or	sold,	respectively,	so	that,	

for	h	=	1,	. . .,	H:

	




a a 0h
X

h
X

h
Xb− ≤ 	 (10.65)

	




a a 0h
X

h
X

h
Xb− ≤ 	 (10.66)

with	the	corresponding	exclusivity	constraint	on	the	binary	variables:

	
� �
b bh

X
h
X+ − ≤1 0 	 (10.67)

In	addition,	the	minimum	amount	of	emission	allowances	bought	or	sold	is	null:

	 − ≤
a 0h

X
	 (10.68)

	 − ≤
a 0h

X 	 (10.69)
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If	different	cumulative	limits	e X j 	are	set	for	different	territorial	areas	or	jurisdictions	
j	=	1,	.	.	.,	J,	the	formulation	of	Equation	10.63	is	modified	to	take	into	account	the	indi-
vidual	components	acting	on	the	specific	jurisdiction:

	
− + ≤

=
∑e eX

h
X

h

H
j j

1

0
	

(10.70)

Further	aspects	are	discussed	in	Rong	and	Lahdelma	(2007),	addressing	multiperiod	
stochastic	 optimization	 for	 CHP	 production	 with	 CO2	 emission	 trading	 through	
	scenario-based	analysis.

10.4.3.4  Structural Constraints

With	reference	to	the	exemplificative	trigeneration	scheme	of	Figure	10.2,	a	first	part	of	
the	structural	constraints	contains	the	dispatch	factor	limits	within	the	[0,1]	range.	In	
vector	 form,	 for	 the	dispatch	 factors	α	defined	 in	Section	10.2.2.1,	 the	corresponding	
inequalities	are

	 − ≤a 0 	 (10.71)

	 a −1 ≤ 0	 (10.72)

Another	constraint	is	set	up	to	ensure	that	the	fuel	input	is	positive:

	 − ≤Fi 0 	 (10.73)

In	the	representation	of	the	electricity	flows,	the	electricity	input	Wi	from	the	EDS	is	
restricted	to	be	a	positive	value,	and	the	possible	output	to	the	EDS	is	given	by	the	differ-
ence	( )W Wo d− 	that	has	to	be	positive,	as	the	electricity	output	Wo	from	the	CCHP	sys-
tem	(including	the	possible	electricity	input	Wi	from	the	EDS)	cannot	be	lower	than	the	
electrical	load	Wd.	This	leads	to	the	following	inequalities:

	 − ≤Wi 0 	 (10.74)

	 − − ≤( )W Wo d 0 	 (10.75)

The	equality	constraint	10.48	introduced	in	Section	10.4.2	guarantees	that	cases	with	
simultaneous	input	from	the	EDS	and	output	to	the	EDS	cannot	exist	in	the	same	time	
interval.

Furthermore,	the	electricity	input	to	the	CERG	must	be	positive.	The	corresponding	
constraint	 also	 ensures	 that	 there	 is	 no	 possible	 loop	 flow	 of	 electricity	 through	 the	
CERG	input:

	 αW iWEDS −( ) ≤1 0 	 (10.76)
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In	a	CiT	problem,	other	inequality	constraints	may	be	introduced	to	represent	dedicated	
formulations	such	as	the	staircase-like	approximation	of	nonlinear	(e.g.,	exponential)	start-
up	 costs	 or	 the	 linear	 approximation	 of	 a	 nonlinear	 cost	 function	 (Arroyo	 and	 Conejo,	
2000).

10.5  Solution Techniques

10.5.1  Classification of the Techniques

The	solution	techniques	depend	on	the	model	established	for	the	MG	system	under	anal-
ysis.	With	reference	to	the	classification	of	the	problems	indicated	in	Section	10.3.1,	for	
DiT	problems	the	method	is	chosen	mainly	on	the	basis	of	the	characteristics	of	convex-
ity,	 linearity,	 and	 presence	 of	 integer	 variables	 in	 the	 problem	 domain.	 Nonconvex	
domains	can	be	handled	by	defining	suitable	subproblems	on	nonoverlapping	convex	
domains	covering	the	entire	original	domain,	or	by	extending	the	domain	by	making	it	
convex	(including	unfeasible	portions	of	the	domain)	and	verifying	a posteriori	that	in	
the	optimal	solution	no	values	fall	in	the	extended	unfeasible	portion	of	the	domain.

Linearization	of	the	efficiency	and	cost/price	curves	is	generally	introduced	to	avoid	
the	need	of	using	nonlinear	solvers,	either	using	piecewise	linear	curves	or	surfaces	or	
using	piecewise	constant	approximations.	Again,	the	use	of	integer	variables	generated	
by	a	gap	in	the	domain	of	definition	of	a	given	variable	can	be	avoided	when	it	is	possible	
to	extend	the	domain	of	the	corresponding	variable	and	check	a posteriori	that	the	value	
of	the	variable	in	the	optimal	solution	does	not	fall	into	the	gap.

Complete	discretization	of	the	domain	of	all	the	variables	under	analysis	(for	instance,	
used	within	optimization	approaches	solved	with	heuristic	techniques)	allows	avoiding	
the	presence	of	nonconnected	domains,	as	the	discrete	points	in	the	domain	are	chosen	
with	the	only	criterion	to	be	feasible.	In	the	representation	of	continuous	portions	of	the	
domain,	the	discretization	step	has	to	be	sufficiently	reduced	to	provide	acceptable	cov-
erage	of	the	domain,	taking	into	account	the	need	for	maintaining	the	computational	
burden	within	affordable	limits.

For	CiT	problems,	the	solutions	need	to	take	into	account	the	coupling-in-time	of	the	
time	 intervals.	 For	 this	 purpose,	 classical	 solution	 techniques	 include	 multiple	 time-
domain	simulations,	dynamic	programming,	multi-interval	linear	programming,	and	
various	heuristics.	Constraints	of	various	types	can	be	converted	into	linear	constraints	
to	simplify	the	computational	model;	also	constraints	referring	to	time-coupling	aspects	
(such	as	ramp-rate	limits,	minimum	up-	and	down-time	constraints,	and	so	forth)	can	
be	converted	into	linear	constraints	(Arroyo	and	Conejo,	2000).

10.5.2  Single-Objective Optimization

Linear	programming	is	adopted	when	the	system	model	is	appropriately	linearized	and	
the	solution	space	is	convex	(Aringhieri	and	Malucelli,	2003;	Kong	et al.,	2005;	Lozano	
et al.,	2009b).	Weber	et al.	 (2006)	adopt	 linear	programming	within	a	planning	and	
operational	 approach.	 A	 particular	 case	 of	 solution	 with	 linear	 programming	 is	 the	
tricommodity	simplex	formulated	in	Rong	and	Lahdelma	(2005),	assuming	a	convex	



10-33Operational Optimization of Multigeneration Systems

feasible	 operating	 region	 of	 the	 trigeneration	 plant	 with	 three	 energy	 products	 in	
	function	of	the	three	production	levels.

Mixed	integer-linear	programming	(MILP)	is	one	of	the	most	used	approaches	in	the	
relevant	literature,	to	encompass	the	presence	of	regions	with	linearized	characteristics,	
as	well	as	possible	individual	points	of	operation.	For	instance,	Yokoyama	et al.	(2002)	
formulate	 a	 large-scale	 MILP	 problem	 with	 binary	 variables	 for	 selection	 and	 on/off	
status	 of	 equipment,	 and	 continuous	 variables	 for	 capacities	 and	 load	 allocation	 of	
equipment.	MILP	is	adopted	in	Oh	et al.	(2007)	for	planning	with	hourly	operational	
schedules	 with	 a	 branch-and-bound	 solution	 technique,	 in	 Piacentino	 and	 Cardona	
(2008a)	for	an	integrated	optimal	planning	and	operation,	in	Sakawa	et al.	(2002),	where	
the	coupling	among	the	time	periods	given	by	the	equipment	start-up	and	shutdown	is	
taken	into	account	and	an	approximate	solution	with	genetic	algorithm	is	also		presented,	
and	in	Lozano	et al.	(2009a).

Mixed-integer	 nonlinear	 programming	 (MINP)	 is	 adopted	 by	 Curti	 et  al.	 (2002a)	
within	a	 comprehensive	approach	 to	design,	 installation,	and	operation	of	 integrated	
energy	systems,	in	which	the	decision	variables	are	defined	in	a	noncontiguous	domain	
and	the	problem	formulated	is	highly	nonlinear;	the	optimization	problem	is	solved	by	
using	a	genetic	algorithm.	Jüdes	et al.	(2009)	handle	nonconvex	cases	through	the	heu-
ristic	 branch	 and	 cut	 algorithm,	 whereas	 Chicco	 and	 Mancarella	 (2009b)	 extend	 the	
domain	of	definition	of	the	generated	power	in	order	to	get	continuous	variables	avoid-
ing	 the	 use	 of	 integer	 variables,	 and	 resort	 to	 a	 sequential	 quadratic	 programming	
solution.

Lagrangian	multipliers	are	used	in	Geidl	and	Andersson	(2007a)	and	Hemmes	et al.	
(2007),	with	a	convex	model	solved	by	applying	the	Karush–Kuhn–Tucker	first-order	opti-
mality	condition	to	provide	the	marginal	costs	of	the	energy	carriers	at	input	and	output.

Lagrangian	relaxation	is	used	in	Rong	et al.	(2008),	to	address	trigeneration	systems	
with	 storage.	 The	 application	 of	 this	 method	 calls	 for	 defining	 the	 feasible	 operating	
region	 for	 heat	 and	 cooling	 production,	 in	 order	 to	 compute	 the	 corresponding	
Lagrangian	 dual	 solution.	 The	 use	 of	 Lagrangian	 relaxation	 decomposes	 the	 overall	
problem	 into	 hourly	 models	 (Makkonen	 and	 Lahdelma,	 2006),	 then	 linear	 program-
ming	is	adopted	to	solve	a	convex	model,	or	MILP	to	solve	a	nonconvex	model	through	
partitioning	of	the	nonconvex	regions	into	a	nonoverlapping	set	of	convex	regions.

10.5.3  Multiobjective Optimization

The	transformation	of	a	multiobjective	problem	into	a	single-objective	problem	can	be	
obtained	by	shaping	 the	objective	 function	as	 indicated	 in	Section	10.3.1.2	and	using	
optimization	 techniques	 aimed	 at	 solving	 single-objective	 functions	 (Wang	 et  al.,	
2010b).

From	the	methodological	point	of	view,	further	approaches	have	been	implemented,	
for	instance:

•	 An	approach	based	on	goal	programming,	such	as	the	goal	attainment	procedure	
presented	 in	 Chang	 and	 Fu	 (1998):	 This	 procedure	 is	 applicable	 to	 convex	
or  	nonconvex	 domains,	 and	 is	 based	 on	 defining	 a	 set	 of	 target	 goals	 with	
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	corresponding	 objectives	 that	 can	 be	 under-	 or	 over-achieved.	 A	 weight	 vector	
controls	the	degree	of	under-	or	over-achievement	of	each	objective,	allowing	a	
certain	 trade-off	 among	 the	 objectives.	 This	 approach	 allows	 transforming	 the	
multiobjective	optimization	into	a	scalar	optimization	problem.

•	 The	approach	presented	in	Tsay	(2003),	based	on	the	objective	function	10.17	and	
adopting	a	minimum least-square error	to	drive	the	solution	toward	an	acceptable	
optimal	value	 x :	The	stop	criterion	 is	 set	on	 the	basis	of	 satisfaction	 factors	κ j 	
defined	(using	the	notation	reported	in	Section	10.3.1.2)	for	the	objective		functions	
j	=	1,	. . .,	N	as

	

κ j

j j

j j
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(10.77)

The	solution	process	stops	if	all	satisfaction	factors	are	accepted,	else	the	weighting	
factors	in	10.17	are	adjusted	and	the	multiobjective	calculation	continues.

The	 conceptual	 core	 of	 multiobjective	 optimization	 is	 based	 on	 the	 possibility	 of	
	calculating	the	set	of	compromise	solutions	located	on	the	Pareto	front,	going	beyond	
the	optimal	 solutions	of	 the	 individual	objective	 functions.	Generally,	 for	either	con-
tinuous	or	discrete	combinatorial	multiobjective	optimization	problems,	it	is	practically	
infeasible	to	calculate	the	entire	Pareto	front.	Hence,	dedicated	algorithms	have	been	set	
up	 to	 provide	 the	 best-known	 Pareto	 front	 as	 the	 computable	 set	 of	 nondominated	
solutions.

Different	techniques	have	been	adopted	to	construct	the	best-known	Pareto	front	in	
the	optimization	algorithms	referring	to	MG	systems	operation,	namely:

	 1.	 The	calculation	of	the	weighted sum	of	the	individual	objectives	(Aki	et al.,	2006b),	
applicable	to	a	convex	Pareto	front:	The	weights	have	no	particular	meaning,	their	
sum	can	be	restricted	to	unity,	and	the	nondominated	solutions	are	obtained	by	
considering	different	weight	combinations;

	 2.	 The	ε-constrained method	(Aki	et al.,	2003,	2006a,b;	Mavrotas	et al.,	2007;	Wang	
et  al.,	 2008):	 This	 method	 considers	 an	 individual	 objective	 as	 the	 target	 to	 be	
optimized,	and	sets	for	all	the	other	objectives	a	limit	expressed	by	a	threshold	ε,	
then	 progressively	 introduces	 a	 threshold	 relaxation	 and	 correspondingly	
upgrades	 the	 set	 of	 nondominated	 solutions;	 this	 method	 is	 also	 applicable	 to	
optimization	problems	with	nonconvex	Pareto	front;	however,	it	becomes	compu-
tationally	less	effective	in	the	presence	of	many	objectives;

	 3.	 The	direct construction	through	heuristic	approaches	(Bernal-Agustín	et al.,	2006;	
Shukla	and	Deb,	2007;	Boicea	et al.,	 2009;	Kavvadias	and	Maroulis,	2010):	The	
method	consists	of	an	iterative	process	in	which	at	each	iteration	multiple		solutions	
are	generated	and	the	solution	set	is	then	reduced	to	maintain	only	the	nondomi-
nated	 solutions;	 various	 approaches	 using	 the	 genetic	 algorithms	 have	 been	
	proposed	and	effectively	used	(Deb	et al.,	2002;	Abido,	2003;	Konak	et al.,	2006;	
Shukla	and	Deb,	2007).
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	 4.	 The	adoption	of	clustering evolutionary algorithms,	with	the	approach	specifically	
developed	by	a	research	group	and	adopted	in	various	applications	(Burer	et al.,	
2003;	Xia	et al.,	2004;	Pelet	et al.,	2005;	Li	et al.,	2006).

After	having	obtained	the	points	on	the	best-known	Pareto	front,	personal	judgment	
of	the	decision-maker	is	needed	to	choose	the	preferred	solution.	This	decision	can	be	
assisted	by	using	suitable	numerical	techniques	to	rank	the	compromise	solutions,	such	
as	those	based	on	multiattribute	decision-making	concepts	(Li,	2009;	Wang	et al.,	2009).

10.6  Example of Application

10.6.1  Trigeneration System Demand and Configuration

The	optimization	example	presented	here	 refers	 to	a	DiT	problem	 for	a	 trigeneration	
system	exploited	in	a	tertiary	sector	application	to	cover	electricity,	heat,	and	cooling	
needs.	The	trigeneration	system	configuration	is	the	one	indicated	in	Figure	10.2	(Section	
10.2).	The	electricity,	heat,	and	cooling	demand	is	summarized	by	considering	a	typical	
day	 of	 an	 intermediate	 season,	 partitioned	 into	 hourly	 time	 periods	 (Chicco	 and	
Mancarella,	2008c,	2009b;	Kavvadias	and	Maroulis,	2010).	Electricity	prices	are	taken	
from	a	real	case	in	Italy	(single	national	prices	in	the	Italian	electricity	market	on	May	
16,	2007).	The	trigeneration	system	is	seen	as	a	price-taker,	and	the	same	price	ρ ρi o

EDS EDS= 	
is	 considered	 for	 electricity	 input	 and	 output.	 The	 gas	 price	 is	 assumed	 constant	 at	
ρg

GDS	=	24	€/MWh	during	 the	day,	as	 it	may	be	set	 in	relatively	 long-term	contractual	
provisions	(e.g.,	annual	contracts).	Figure	10.3	shows	the	corresponding	hourly	energy	
demands	 and	 prices.	 At	 each	 time	 period,	 the	 user’s	 energy	 demand	 array	
vd d d d

TW Q R= [ , , ] 	is	assigned	as	an	input	data.
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The	trigeneration	system	equipment	has	the	following	characteristics:

•	 A	CHP	unit	with	an	electrical	capacity	of	700	kWe,	a	thermal	capacity	of	1050	kWt,	
electrical	efficiency	ηW

CHP	=	0.3,	and	thermal	efficiency	ηQ
CHP	=	0.45.

•	 An	AB	with	a	capacity	of	1500	kWt	and	thermal	efficiency	ηQ
AB	=	0.85.

•	 A	CERG	with	a	capacity	of	600	kWc	and	COPCERG	=	3.
•	 A	WARG	with	a	capacity	of	600	kWc	and	COPWARG	=	0.9.

The	rating	of	the	trigeneration	equipment	components	is	not	necessarily	optimized	
from	the	design	point	of	view,	as	this	example	shown	could	be	seen	as	an	operational	
optimization	embedded	into	the	external	loop	of	a	planning	problem	aimed	at	sizing	the	
trigeneration	system	components.

The	decision	variables	are	the	dispatch	factors	indicated	in	Equation	10.8,	as	well	as	
the	 fuel	 input	 Fi	 and	 the	 electricity	 input	 Wi,	 and	 are	 included	 in	 the	 array	
x = [ ]α α α α α αW F W

y
Q Q Q

y
i i

TFWEDS GDS CHP AB .
To	simplify	the	descriptions,	constant	efficiency	and	COP	values	are	assumed	for	the	

trigeneration	equipment.	This	leads	to	using	the	system	efficiency	matrix	H	reported	in	
Section	10.2.2.2.	The	presence	of	products	among	 the	decision	variables	 leads	 to	 the	
formulation	 of	 a	 nonlinear	 optimization	 problem,	 in	 which	 the	 nonlinearity	 comes	
from	the	decision	variables,	and	not	from	the	equipment	characteristics.	The	numerical	
solution	is	obtained	with	nonlinear	optimization	techniques	(Chicco	and	Mancarella,	
2008c,	2009b).	The	maximum	capacity	constraint	of	the	equipment	is	enforced	during	
the	calculations,	and	the	lower	limit	is	set	to	zero	to	avoid	a	nonconnected	domain.	The	
solutions	obtained	will	be	checked	a posteriori	for	feasibility	regarding	the	lower	limit.

10.6.2   Energy Costs and Energy Efficiency Optimizations 
for a Single Time Period

Single-objective	optimizations	are	carried	out	by	using	the	minimum	energy	cost	and	
the	maximum	TPES	 indicator	as	 individual	objectives.	 In	 the	 latter	case,	energy	effi-
ciency	of	the	trigeneration	system	is	compared	with	separate	production	of	conventional	
electricity,	 heat	 and	 cooling	 generation	 serving	 the	 same	 user’s	 demand.	 Separate	
	production	efficiencies	are	set	to	ηe

SP 	=	0.4	for	electricity	production,	ηt
SP 	=	0.85	for	heat	

production,	and	COPSP	=	3	for	the	reference	electric	chiller.
The	details	of	 the	 solution	of	 single-objective	optimization	 for	a	 single	hour	 (hour	

12:00)	are	shown	in	this	section.	The	average	power	(or	hourly	energy)	demand	values	
are	Wd	=	504	kWe	for	electricity,	Qd	=	840	kWt	for	heat,	and	Rd	=	212.5	kWc	for	cooling.	
The	initial	values	of	the	dispatch	factors	are	set	up	to	obtain	a	feasible	initial	solution.

With	 minimum	 energy	 cost	 optimization,	 the	 solution	 obtained	 (Figure	 10.4)	
	maintains	the	CHP	at	its	maximum	output	to	benefit	from	selling	electricity	to	the	EDS.	
This	solution	depends	on	the	relatively	high	electricity	price	at	which	the	local	trigenera-
tion	system	can	sell	electricity	to	the	EDS,	thus	making	it	convenient	to	use	more	fuel	
from	the	GDS	to	make	the	CHP	operate	at	its	maximum	capacity.	The	electrical	output	
from	the	CHP	goes	to	the	electrical	load	and	the	excess	is	sent	to	the	EDS,	whereas	the	
thermal	 output	 from	 the	 CHP	 supplies	 to	 the	 thermal	 load	 and	 the	 WARG.	 The	 AB	
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	supplies	additional	heat	 to	 the	WARG	to	 serve	 the	cooling	 load.	 In	 this	 solution,	 the	
CERG	is	not	supplied.

Conversely,	with	maximum	TPES	optimization,	 the	 solution	 (Figure	10.5)	 leads	 to	
limit	the	fuel	input,	and	the	CHP	is	exploited	to	ensure	thermal	demand	coverage	(cor-
responding	to	the	TLT	mode).	The	cooling	demand	is	covered	by	the	CERG,	supplied	by	
the	CHP	with	a	further	small	contribution	from	the	EDS.	The	WARG	remains	inactive.	
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In	this	case,	providing	electricity	from	the	EDS	to	supply	the	cooling	load	through	the	
CERG	proves	to	be	most	energy-efficient	than	taking	fuel	from	the	GDS.

The	 reported	 solutions	 are	 clearly	 different	 for	 the	 two	 optimization	 criteria,	 even	
though	both	solutions	are	optimal	and	supply	the	same	user’s	energy	demand	of 	electricity,	
heat,	and	cooling.	These	solutions	depend	on	the	numerical	values	of the input	data,	and	
cannot	be	used	to	draw	general	conclusions	for	trigeneration	system	applications.	In	any	
case,	these	solutions	point	out	a	remarkable	difference	among the results	from	different	
types	of	optimization,	 in	 fact	corresponding	 to	 	conflicting	solutions.	As	such,	 there	 is	
room	 for	applying	multiobjective	optimization	and	 seeking	 the	compromise	 solutions	
located	on	the	best-known	Pareto	front,	as	shown	in	Section	10.6.4.

10.6.3   Energy Costs and Energy Efficiency Optimizations 
for a Typical Day

The	optimizations	carried	out	in	the	previous	section	can	be	repeated	for	different	time	
periods,	 leading	 to	 a	 set	 of	 operational	 solutions	 whose	 characteristics	 may	 change	
according	to	the	evolution	in	time	of	the	energy	loads	and	prices.	In	the	stepwise	repre-
sentations	of	the	following	figures,	the	solutions	shown	for	a	certain	hour	correspond	to	
the	step	indicated	from	that	hour	to	the	successive	one.	For	instance,	the	solutions	for	
hour	12:00	correspond	to	the	step	from	hour	12:00	to	hour	13:00.

Results	 of	 hourly	 calculations	 are	 shown	 in	 Figure	 10.6	 (energy	 costs)	 and	 in	
Figure 10.7	(TPES	indicator),	in	which	the	values	obtained	from	the	optimizations	are	
compared	with	the	ones	referring	to	classical	TLT	and	ELT	operation	strategies.

The	electricity,	heat,	and	cooling	energy	flows	are	reported	in	Figures	10.8	through	
10.10,	respectively.	Furthermore,	Figures	10.11	and	10.12	show	the	evolution	in	time	of	
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the	 dispatch	 factors	 in	 the	 optimal	 cases	 of	 energy	 cost	 minimization	 and	 TPES	
	maximization,	respectively.

The	above	results	strictly	depend	on	the	evolution	in	time	of	the	different	energy	loads	
and	prices.	 In	 this	context,	 it	can	be	seen	that	 the	maximum	TPES	solution	provides	
clear	 indications	 on	 the	 use	 of	 the	 CHP	 to	 supply	 the	 thermal	 user’s	 demand	 (with	
backup	needed	from	the	AB	only	at	hours	07:00	and	08:00)	and	on	the	use	of	the	CERG	
to	supply	the	cooling	user’s	demand	(the	WARG	is	always	inactive).	The	CHP	is	always	
switched	on	and	provides	electricity	and	heat	at	 loading	levels	higher	than	50%	of	 its	
capacity	(even	though	the	minimum	switch-on	operational	limit	is	set	up	to	zero),	and	
during	most	of	the	day	there	is	an	amount	of	electricity	sent	to	the	EDS.

In	the	minimum	energy	cost	solution,	during	the	night	the	CHP	is	switched	off	from	
02:00	to	07:00,	losing	in	this	case	any	advantage	in	terms	of	energy	efficiency	(TPES	=	0).	
During	the	day,	the	minimum	cost	is	generally	obtained	by	maintaining	the	CHP	in	oper-
ation	at	its	maximum	output.	Correspondingly,	the	user’s	cooling	demand	is	mainly	cov-
ered	by	the	WARG,	with	a	few	exceptions	with	CERG	operation	at	hours	07:00	and	08:00	
(at	which	the	CHP	operates	at	its	capacity	limits)	and	at	hour	13:00	(at	which	the	WARG	
output	reaches	its	capacity	limit),	and	an	additional	condition	at	hour	09:00	(at	which	the	
user’s	cooling	demand	is	partially	supplied	from	CERG	and	partially	from	WARG).

As	far	as	the	classical	TLT	and	ELT	operation	strategies,	in	the	typical	day	analyzed	
the	ELT	strategy	is	almost	never	convenient.	In	the	central	hours	of	the	day,	the	mini-
mum	energy	cost	solution	is	relatively	similar	to	the	solution	obtained	by	applying	the	
TLT	strategy,	being	at	the	same	time	substantially	different	from	the	one	that	provides	
the	maximum	TPES.

The	overall	results	indicate	that	from	hour	20:00	to	1:00	the	results	obtained	by	using	the	
minimum	 energy	 costs	 or	 maximum	 TPES	 provide	 similar	 information.	 In	 the	 other	
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hours,	 the	 information	 is	 evidently	 conflicting.	 During	 the	 hours	 at	 which	 energy	 cost	
minimization	and	TPES	maximization	are	clearly	conflicting,	it	is	possible	to	gain	further	
insights	by	performing	multiobjective	optimization,	as	shown	in	the	following	section.

10.6.4  Multiobjective Optimization

The	determination	of	some	compromise	solutions	belonging	to	the	best-known	Pareto	
front	for	hour	12:00	is	shown	here	as	an	example.	The	calculations	have	been	carried	out	
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by	using	the	NSGA-II	algorithm	(Deb	et al.,	2002),	with	suitable	adaptations	to	handle	
the	presence	of	the	equality	and	inequality	constraints.

The	example	presented	here	has	been	constructed	by	using	a	population	of	200	chromo-
somes,	 evolving	within	an	 iterative	process	 stopping	when	 the	best-known	Pareto	 front	
does	not	exhibit	significant	changes	for	10	successive	generations.	To	discuss	the	character-
istics	of	possible	compromise	solutions,	Figure	10.13	shows	two	(nondominated)	compro-
mise	solutions	belonging	to	the	best-known	Pareto	front.	Table	10.1	reports	the	objective	
functions	and	the	dispatch	factors	obtained	for	these	nondominated	solutions,	as	well	as	the	
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results	 of	 the	 individual	 optimizations	 illustrated	 in	 Section	 10.6.2.	 The	 solutions	 are	
ordered	in	ascending	value	of	energy	costs,	clearly	resulting	in	corresponding	descending	
values	of	1	−	TPES	(minimized)	or	ascending	values	of	TPES	(maximized)	because	of	the	
nondominant	characteristics	of	the	solution	points	located	on	the	best-known	Pareto	front.

The	solution	obtained	for	compromise	solution	no.	1	is	shown	in	Figure	10.14.	The	two	
compromise	solutions	share	the	characteristics	of	selling	electricity	to	the	EDS	(but	to	a	
lower	extent	with	respect	to	the	minimum	energy	cost	solution)	as	well	as	the	presence	
of	a	nonnegligible	amount	of	waste	heat	(8.59	kWt	 in	compromise	solution	no.	1,	and	
29.28	kWt	in	compromise	solution	no.	2),	and	the	use	to	a	different	extent	of	both	CERG	
and	WARG	to	supply	the	user’s	cooling	demand.	No	lower	operational	limits	have	been	
imposed	on	CERG	and	WARG,	so	that	compromise	solution	no.	2	(Figure	10.15)	indi-
cated	a	limited	WARG	contribution	to	serve	the	cooling	load.	
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The	 results	 shown	 in	 this	 section	 confirm	 the	 variety	 of	 optimal	 and	 compromise	
solutions	that	can	be	obtained	for	the	trigeneration	scheme	used	in	this	case	study	appli-
cation.	These	solutions	may	be	activated	by	establishing	suitable	control	schemes	using	
the	dispatch	factors	as	control	variables.	The	effectiveness	of	application	of	the	optimal	
solutions	found	clearly	depends	on	the	estimated	loads	and	on	performance	character-
istics	of	the	equipment.

10.7  Conclusions

In	local	MG	plants,	the	interactions	among	the	local	equipment	give	some	possibility	to	
adjust	the	energy	flows	of	various	energy	vectors	inside	the	plant,	 leading	to	increasing	
operational	flexibility.	In	the	numerical	model	of	the	MG	system,	the	local	interactions	are	
represented	through	dispatch	factors	acting	as	decision	variables.	Given	the	energy	loads,	
in	an	MG	system	multiple	solutions	with	different	energy	flows	can	be	found,	correspond-
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TABLE 10.1 Optimal	Solutions	from	Individual	Optimizations	and	Multiobjective	Optimization	
(NSGA-II)	for	Hour	12:00

Dispatch	Factors

Solution αF
GDS αW

y αQ
CHP αQ

AB αQ
y

αW
EDS Energy	Cost	

(€/h) 1−TPES TPES

Minimum	energy	
cost

0.9870 1 0.8 0 1 1 31.08 0.8109 0.1891

Compromise	no.	1 0.9724 0.9091 0.9683 0.2537 0.9901 1 44.82 0.7979 0.2021
Compromise	no.	2 0.9999 0.8823 0.9920 0.2565 0.9666 1 45.25 0.7935 0.2065
Maximum	TPES 1 0.8735 1 0 1 0.9988 46.74 0.7697 0.2303
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ing	to	different	energy	inputs.	Among	these	solutions,	it	is	possible	to	set	up	suitable	opti-
mizations	 to	 identify	 the	 most	 convenient	 solutions	 according	 to	 specified	 objective	
functions	with	appropriate	constraints.	The	different	and	often	conflicting	nature	of	the	
objectives	paves	the	way	to	the	formulation	of	multiobjective	optimization	problems.

This	 chapter	 has	 provided	 an	 integrated	 view	 of	 objective	 functions,	 constraints,	
and solution	methods	used	 to	address	optimal	MG	system	operation.	Examples	have	
been	 shown	 with	 reference	 to	 trigeneration	 systems,	 to	 highlight	 some	 details	 of	 the	
formulation	and	solution	of	optimization	problems.	More	generally,	local	MG	systems	
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may	 interact	with	other	 local	 sources	 (e.g.,	 from	renewable	energy)	and	are	 intercon-
nected	among	them	through	the	energy	networks,	thus	integrating	MG	with	the	distrib-
uted	 energy	 resources	 encompassing	 distributed	 generation,	 distributed	 storage,	 and	
demand	 response,	 forming	 the	 wider	 distributed	 MG	 paradigm	 (Tsikalakis	 and	
Hatziargyriou,	2007;	Yusta	et al.,	2007;	Chicco	and	Mancarella,	2009a).

For	 a	 given	 plant	 structure,	 the	 analysis	 and	 optimization	 procedures	 can	 be	 run	
offline	 to	 identify	 the	 most	 convenient	 operational	 strategies.	 Then,	 the	 optimization	
results	 have	 to	 be	 applied	 to	 actual	 MG	 system	 operation,	 activating	 the	 operational	
strategies	through	suitable	control	systems.	For	this	purpose,	specific	control	structures	
and	tools	have	to	be	provided	through	exploitation	of	information	and	communication	
technology	concepts	and	applications.	The	integration	of	information	and	communica-
tion	technology	plays	a	crucial	role	in	the	optimal	coordination	and	management	of	MG	
systems	 interacting	 through	 various	 energy	 distribution	 networks	 and	 microgrids	
(Marnay	et al.,	2008;	Tsikalakis	and	Hatziargyriou,	2008),	which	opens	the	way	to	an	
innovative	multienergy	smart	grid	framework.

Further	developments	for	MG	optimization	are	being	enabled	by	enhanced	availabil-
ity	of	real-time	data	for	the	different	energy	vectors.	In	this	respect,	challenging	aspects	
are	the	formulation	and	solution	of	integrated	objective	functions,	including	technical,	
economic,	environmental,	and	social	aspects	in	a	comprehensive	optimization	frame-
work,	also	taking	into	account	data	uncertainty	(for	instance,	through	stochastic	opti-
mization).	 The	 numerical	 approaches	 to	 solve	 the	 optimization	 problems	 using	 these	
integrated	 objective	 functions	 have	 to	 be	 deeply	 refined,	 dealing	 with	 computational	
complexity	issues	for	making	these	solutions	more	easily	tractable.

Nomenclature

Acronyms
AB	 Auxiliary	boiler
AHP	 Absorption	heat	pump
AP	 Acidification	potential
CCHP	 Combined	cooling,	heat,	and	power
CERG	 Compression	electrical	refrigerator	group
CHP	 Combined	heat	and	power
CiT	 Coupled-in-time
COP	 Coefficient	of	performance
DiT	 Decoupled-in-time
DMG	 Distributed	multigeneration
EDC	 Engine-driven	chiller
EDHP	 Engine-driven	heat	pump
EDS	 Electrical	distribution	system
EHP	 Electric	heat	pump
ELT	 Electrical	load	tracking
GAHP	 Gas	absorption	heat	pump
GARG	 Gas	absorption	refrigerator	group
GDS	 Gas	distribution	system
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GHG	 Greenhouse	gas
GWP	 Global	warming	potential
LER	 Local	emission	reduction
LHV	 Lower	heating	value
MILP	 Mixed-integer	linear	programming
MINP	 Mixed-integer	nonlinear	programming
ODP	 Ozone	depletion	potential
PCO2ER/
PCDER	 Polygeneration	CO2/carbon	dioxide	emission	reduction
PR11ER	 Polygeneration	R11	emission	reduction
PSDER	 Polygeneration	sulphur	dioxide	emission	reduction
PPES	 Polygeneration	primary	energy	saving
SS	 Spark	spread
TLT	 Thermal	load	tracking
TPES	 Trigeneration	primary	energy	saving
TSS	 Total	supply	spread
WARG	 Water	absorption/adsorption	refrigerator	group

Symbols
Variables
b binary	variable
c (subscript)	cooling
d day	type	index
e (subscript)	electrical
f objective	function;	(subscript)	fuel
g generic	GHG
h time	interval	index
i (subscript)	input
j jurisdiction	index
m mass
n number	of	days
o (subscript)	output
s season	index
t time;	(subscript)	thermal
u (superscript)	useful
w weighting	factor
x	 type	of	energy
y	 (superscript)	cogeneration
l	 losses
D	 number	of	day	types
F	 fuel
H	 number	of	time	intervals
J	 number	of	jurisdictions
M	 number	of	solution	points	in	multiobjective	optimization
N	 number	of	objective	functions	in	multiobjective	optimization
Q	 heat
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R	 cooling
S	 number	of	seasons
W	 electricity
X	 generic	energy	vector
Y	 generic	multigeneration	equipment
α	 dispatch	factor
β	 fraction	of	pollutant
η	 efficiency
κ	 satisfaction	factor
λ	 heat	to	power	ratio
μ	 emission	factor	for	global	warming	and	local	pollution
ν	 emission	factor	for	the	acidification	problem
ο	 emission	factor	for	the	stratospheric	ozone	depletion	problem
ρ	 price
τ	 time	duration
� 	 time	duration	counter

Sets and global functions:
D	 set	with	energy	vector	and	type	of	energy
G	 set	of	pollutants
X	 set	of	energy	vectors
Y	 set	of	multigeneration	equipment	or	components
C	 costs
E 	 pollution	costs
F	 function	of	the	decision	variables
R 	 revenues

Vectors and matrices:
a	 emission	allowances
e	 emissions
f	 objective	functions
g	 reserves
h	 equality	constraints	function
r	 reserve;	ramp-rate	limits	during	operation
s	 start-up/shutdown	ramp-rate	limits
v	 energy	vector
x	 decision	variables
z	 energy	stored
H	 efficiency	matrix
S	 storage	coupling	matrix
α	 dispatch	factors
β	 decision	variables	subvector
λ	 Lagrangian	multipliers
ψ	 inequality	constraints	function
ζ	 marginal	values
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